Download presentation
Presentation is loading. Please wait.
Published byBarnaby Richardson Modified over 9 years ago
1
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics §7.6 Double Integrals
2
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 2 Bruce Mayer, PE Chabot College Mathematics Review § Any QUESTIONS About §7.5 → Lagrange Multipliers Any QUESTIONS About HomeWork §7.5 → HW-8 7.5
3
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 3 Bruce Mayer, PE Chabot College Mathematics Partial-Deriv↔Partial-Integ Extend the Concept of a “Partial” Operation to Integration. Consider the mixed 2 nd Partial ReWrite the Partial in Lebniz Notation: Now Let:
4
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 4 Bruce Mayer, PE Chabot College Mathematics Partial-Deriv↔Partial-Integ Thus with ∂z/∂y = u: Now Multiply both sides by ∂x and Integrate Integration with respect to the Partial Differential, ∂x, implies that y is held CONSTANT during the AntiDerivation
5
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 5 Bruce Mayer, PE Chabot College Mathematics Partial-Deriv↔Partial-Integ Performing The AntiDerivation while not including the Constant find: Now Let: Then substitute, then multiply by ∂x
6
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 6 Bruce Mayer, PE Chabot College Mathematics Partial-Deriv↔Partial-Integ Integrating find: After AntiDerivation: But ReCall: Back Substituting find By the Associative Property
7
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 7 Bruce Mayer, PE Chabot College Mathematics Partial-Deriv↔Partial-Integ Also ReCall Clairaut’s Theorem: This Order-Independence also Applies to Partial Integrals Which leads to the Final Statement of the Double Integral C is the Constant of Integration
8
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 8 Bruce Mayer, PE Chabot College Mathematics Area BETWEEN Curves As before Find Area by adding Vertical Strips. In this case for the Strip Shown: Width = Δx Height = y top − y bot or Then the strip area
9
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 9 Bruce Mayer, PE Chabot College Mathematics Area BETWEEN Curves Note that for every CONSTANT x k, that y runs: Now divide the Hgt into pieces Δy high So then ΔA: Then A strip is simply the sum of all the small boxes
10
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 10 Bruce Mayer, PE Chabot College Mathematics Area BETWEEN Curves Substitute: Then Next Add Up all the Strips to find the Total Area, A
11
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 11 Bruce Mayer, PE Chabot College Mathematics Area BETWEEN Curves This Relation Is simply a Riemann Sum Then in the Limit Find
12
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 12 Bruce Mayer, PE Chabot College Mathematics Example Area Between Curves Find the area of the region contained between the parabolas
13
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 13 Bruce Mayer, PE Chabot College Mathematics
14
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 14 Bruce Mayer, PE Chabot College Mathematics Example Area Between Curves SOLUTION: Use Double Integration
15
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 15 Bruce Mayer, PE Chabot College Mathematics MATLAB code % Bruce Mayer, PE % MTH-16 22Feb14 % Area_Between_fcn_Graph_BlueGreen_BkGnd_Template_1306.m % Ref: E. B. Magrab, S. Azarm, B. Balachandran, J. H. Duncan, K. E. % Herhold, G. C. Gregory, "An Engineer's Guide to MATLAB", ISBN % 978-0-13-199110-1, Pearson Higher Ed, 2011, pp294-295 % clc; clear; clf; % Clear Figure Window % % The Function xmin = -2; xmax = 2; ymin = 0; ymax = 10; x = linspace(xmin,xmax,500); y1 = -x.^2 + 9; y2 = x.^2 + 1; % plot(x,y1,'--', x,y2,'m','LineWidth', 5), axis([0 xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = f(x) = -x^2 + 9 & x^2 + 1'),... title(['\fontsize{16}MTH16 Bruce Mayer, PE',]),... legend('-x^2 + 9','x^2 + 1') % display('Showing 2Fcn Plot; hit ANY KEY to Continue') % "hold" = Retain current graph when adding new graphs hold on disp('Hit ANY KEY to show Fill') pause % xn = linspace(xmin, xmax, 500); fill([xn,fliplr(xn)],[-xn.^2 + 9, fliplr(x.^2 + 1)],[.49 1.63]), grid on % alternate RGB triple: [.78.4.01]
16
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 16 Bruce Mayer, PE Chabot College Mathematics Volume Under a Surface Use Long Strips to find the Area under a Curve (AuC) by Riemann Summation Use Long Boxes to find the Volume Under a Surface (VUS) by Riemann Summation
17
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 17 Bruce Mayer, PE Chabot College Mathematics VUS by Double Integral
18
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 18 Bruce Mayer, PE Chabot College Mathematics Example Vol under Surf Find the volume under the Surface described by Over the Domain See Plot at Right
19
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 19 Bruce Mayer, PE Chabot College Mathematics Example Vol under Surf SOLUTION: Find Vol by Double Integral
20
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 20 Bruce Mayer, PE Chabot College Mathematics Example Vol under Surf Completing the Reduction
21
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 21 Bruce Mayer, PE Chabot College Mathematics VUS for NonRectangular Region If the Base Region, R, for a Volume Integral is NonRectangular and can be described by InEqualities Then by adding up all the long boxes If R described by Then:
22
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 22 Bruce Mayer, PE Chabot College Mathematics Example NonRectangular VUS Find the volume under the surface Over the Region Bounded by SOLUTION: First, visualize the limits of integration using a graph of the Base Plane Integration Region:
23
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 23 Bruce Mayer, PE Chabot College Mathematics Example NonRectangular VUS The outer limits of integration need to be numerical (no variables), but the Inner limits can contain expressions in x (or y) as in the definition. In this case, choose the inner limits to be with respect to y, then find the limits of the y values in terms of x
24
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 24 Bruce Mayer, PE Chabot College Mathematics Example NonRectangular VUS Each y-value in the region is restricted by the constant height 0 at the top, at the bottom by the Line: Thus the Double Integral (so far): In Simplified Notation
25
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 25 Bruce Mayer, PE Chabot College Mathematics Example NonRectangular VUS Now, Because the outer integral needs to contain only numbers values, consider only the absolute limits on the x-values in the figure: a MINimum of 0 and a MAXimum of 5 Thus the Completed Double Integral
26
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 26 Bruce Mayer, PE Chabot College Mathematics Example NonRectangular VUS Complete the Mathematical Reduction
27
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 27 Bruce Mayer, PE Chabot College Mathematics Example NonRectangular VUS Complete the Mathematical Reduction The volume contained underneath the surface and over the triangular region in the XY plane is approximately 69.8 cubic units.
28
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 28 Bruce Mayer, PE Chabot College Mathematics Example NonRectangular VUS Verify Constrained VUS by MuPad V := int((int(x+E^(x+2*y), y=x-5..0)), x=0..5) Vnum = float(V)
29
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 29 Bruce Mayer, PE Chabot College Mathematics Average Value Recall from Section 5.4 that the average value of a function f of one variable defined on an interval [a, b] is Similarly, the average value of a function f of two variables defined on a rectangle R to be:
30
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 30 Bruce Mayer, PE Chabot College Mathematics Example Average Sales Weekly sales of a new product depend on its price p in dollars per item and time t in weeks after its release, can be Modeled by: Where S is measured in k-units sold Find the average weekly sales of the product during the first six weeks after release and when the product’s price varies between 15 – t and 25 – t.
31
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 31 Bruce Mayer, PE Chabot College Mathematics Example Average Sales SOLUTION: first find the area of the region of integration as shown below Note that The price Constraints produce a Parallelogram-like Region By the Parallelogram Area Formula
32
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 32 Bruce Mayer, PE Chabot College Mathematics Example Average Sales Proceed with the Double Integration
33
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 33 Bruce Mayer, PE Chabot College Mathematics Example Average Sales Continue the Double Integration
34
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 34 Bruce Mayer, PE Chabot College Mathematics Example Average Sales Complete the Double Integration The average weekly sales is 21,900 units over the time and pricing constraints given.
35
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 35 Bruce Mayer, PE Chabot College Mathematics WhiteBoard Work Problems From §7.6 P7.6-89 → Exposure to Disease
36
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 36 Bruce Mayer, PE Chabot College Mathematics All Done for Today Volume by Riemann Sum
37
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 37 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics Appendix –
38
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 38 Bruce Mayer, PE Chabot College Mathematics §7.3 Learning Goals Define and compute double integrals over rectangular and NONrectangular regions in the xy plane Use double integrals in problems involving Area Volume, Average Value Population Density
39
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 39 Bruce Mayer, PE Chabot College Mathematics
40
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 40 Bruce Mayer, PE Chabot College Mathematics
41
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 41 Bruce Mayer, PE Chabot College Mathematics
42
BMayer@ChabotCollege.edu MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 42 Bruce Mayer, PE Chabot College Mathematics
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.