Download presentation
Presentation is loading. Please wait.
Published byAriel Andrews Modified over 9 years ago
1
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Linac Coherent Light Source (LCLS) Low Level RF System Injector Turn-on January 2007 September 19, 2006
2
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Safety First and Second and Third…..to Infinity Hazards in the LLRF system RF 1kW at 120Hz at 5uS = 0.6 Watts average, 2 Watt average amps at 2856MHz, 60W average amps at 476MHz Hazards – RF Burns Mitigation – Avoid contact with center conductor of energized connectors. All employees working with LLRF systems are required to have the proper training. 110VAC Connector Hazards - Shock Mitigation - Don’t touch conductors when plugging into outlet. All chassis are inspected by UL trained inspector.
3
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Scope of Work – Injector Turn-on Linac Sector 0 RF Upgrade All 3 RF Chassis completed and Installed (Master Oscillator, Master Amp, PEP phase Shifter Control Module ready for test – higher phase noise levels if not installed Sector 20 RF distribution system Phase and Amplitude Controllers (PACs) – 6 units Phase and Amplitude Detectors (PAD) – 2 units Phased Locked Oscillator – Use SPPS unit for Turn On LO Generator – Complete - 50% tested – looks good so far Multiplier – 476MHz to 2856MHz – Complete 50% Tested 4 distribution chassis – Complete 102MHz, 2056MHz, 2830.5MHz Laser Phase Measurement – in Design, diagnostic, not required for turn on – Laser group wants it next week. Distribution Amplifiers – 10W, 2850MHz on order – 10W, 102MHz Amp in search Minicircuits has 5W and 50W LLRF Control and Monitor System 1 kW Solid State S-Band Amplifiers – 5 units – Design Complete, In Fab PAD – 12 units – 6 required for turn on PAC – 6 units Bunch Length Monitor Interface – awaiting Specs Beam Phase Cavity Will use single channel of PAD Chassis Pill box cavity with 2 probes and 4 tuners – 2805MHz 3 units Complete
4
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 LCLS Layout P. Emma
5
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 LLRF Control system spans Sector 20 off axis injector to beyond Sector 30
6
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 LCLS RF Jitter Tolerance Budget RMS tolerance budget for <12% rms peak-current jitter or <0.1% rms final e− energy jitter. All tolerances are rms levels and the voltage and phase tolerances per klystron for L2 and L3 are Nk larger, assuming uncorrelated errors, where Nk is the number of klystrons per linac. P. Emma Lowest Noise Floor Requirement 0.5deg X-Band = 125fS Structure Fill time = 100nS Noise floor = -111dBc/Hz @ 11GHz 10MHz BW -134dBc/Hz @ 476MHz X-band X-X-X-X- 0.50
7
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Slow Drift Tolerance Limits Gun-Laser Timing 2.4* deg-S Bunch Charge 3.2 % Gun RF Phase 2.3 deg-S Gun Relative Voltage 0.6 % L0,1,X,2,3 RF Phase (approx.) 5555deg-S L0,1,X,2,3 RF Voltage (approx.) 5555% (Top 4 rows for / < 5%, bottom 4 limited by feedback dynamic range) * for synchronization, this tolerance might be set to 1 ps (without arrival-time measurement) (Tolerances are peak values, not rms) P. Emma, J, Wu
8
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Distribution system
9
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Concerns of Previous Reviews Installation of temperature stabilized cables can effect phase stability. Working with cable shop on plan for installation Triggers required to be synchronous with 476MHz may jitter The highest frequency that triggers need to be synchronous with is 102MHz. Procedurally triggers will be placed in the stable region SPPS PLL design generates an internal pulse width based on a one-shot and uses an old track and hold chip Redesign of this chassis will be done next year and these comments will be taken into consideration LO Generator design uses internal trim caps and resistors to calibrate unit, synchronization needs to be addressed, should consider SSB modulator We are using internal trim caps and resistors - have not had a problem in the past with these types of devices The synchronization will be monitored and can be reset if it gets out of sync The unit is a SSB modulator Concerns of Hardware and Software being disconnected from each other and the review committee would also like to better understand the software. The LLRF Hardware effort has been moved to the controls group and is now being reviewed with the software.
10
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Linac Sector 0 RF Upgrade PEP PHASE SHIFT ON MAIN DRIVE LINEMDL RF with TIMING Pulse – Sync to DR Master Oscillator is located 1.3 miles from LCLS Injector 1.3 Miles to LCLS Injector LCLS must be compatible with the existing linac operation including PEP timing shifts Measurements on January 20, 2006 at Sector 21 show 30fS rms jitter in a bandwidth from 10Hz to 10MHz
11
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006
12
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Linac Sector 0 RF Upgrade Status New Low Noise Master Oscillator – Done New Low Noise PEP Phase Shifter RF Chassis – Done Control Chassis – Ready for installation New Low Noise Master Amplifier – Done Main Drive Line Coupler in Sector 21 – Done Measurements Noise floor on 476MHz of -156dBc/Hz Integrated jitter from 10Hz to 10MHz of 30fS
13
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 RF System Topology / Specifications
14
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Sector 20 RF Distribution LO and 102MHz resync by adjusting 2856MHz PAC while monitoring S21 2856MHz Laser resync with laser PAC while monitoring difference in 119MHz laser and FIDO out
15
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 2830.5MHz Generator B. Hong
16
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Phase Noise Measurements By J. Frisch Noise Floors Lower Than Expected Values which are Lower than Requirements
17
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Sector 20 RF Distribution System Status Phase Locked Oscillator – 476MHz – Done for now Initial Turn On use SPPS Oscillator Will modify control to achieve better stability during 2007 LO Generator – 2830.5MHz - Built – 50% tested Multipliers - 476MHz to 2856MHz – Built – 50% tested Phase and Amplitude Control (PAC) Unit See next section Phase and Amplitude Detector (PAD) Unit See next section Distribution Amplifiers 2850MHz due mid October 102MHz search under way Laser Phase Measurement System May design DC PAD control board
18
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 LLRF Distribution Schedule Racks to be installed in RF Hut – next week RF Cables (On-site) to be pulled – mid October RF Chassis – 50% complete 10 more chassis required for turn on, to be installed by December Remainder by March 2007 Testing of RF distribution system - December Phase measurements of cables / looped Ready for turn-on – Mid December
19
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Beam Phase Cavity Status Electronics will use single channel of PAD Chassis Pill box cavity with 2 probes and 4 tuners Cavity Electronics will use single channel of RF Monitor Three cavities fabricated The cavity was moved to 2805MHz after concerns of the last review about Dark Current were analyzed. Measurement of beam phase to RF reference phase. The result will be used to correct timing of laser to RF reference. 2805MHz cavity is located between L0A and L0B. Will use RF PAD with 2830.5MHz LO for a 25.5MHz IF.
20
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 LLRF Control System Distributed Control System Microcontroller based IOC Control (PAC) and Detector (PAD) Modules Ethernet Switch Central Feedback Computer
21
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Concerns of Previous Reviews The Slow ADC can have problems with ground noise and should be mounted on the RF board. The Slow ADC is mounted on a separate board for the PAD and the same board for the PAC. It is used to monitor various devices including external thermocouples, RF power levels, and power supply voltages. The system is being designed with too little diagnostics, at a minimum the input power should be monitored for remote chassis. The PAC is being designed with a monitor for input power. The LO on the PAD, when used, will also be monitored. The PAD and PAC systems should report missing, unexpected or multiple trigger signals remotely. The PAC currently has the ability to report missing triggers, but the features have not yet been tested. The processor on the PAD has the capability to do this also and this will be considered in the future if thought necessary.
22
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 LLRF Control and Monitor System Klystron Station
23
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 RF & Temperature Signal Counts for FeedBack exclude Klystron PADs ADC Chan Cnt/FBKHut PADs Temp. Mon. Distribution/Laser 7/0 1.56 RF Gun6/5 1.56 Beam Phase Cavity2/1 0.53 L0-AAccelerator2/2 0.53 L0-B Accelerator2/2 0.53 L0-T Transverse Accelerator2/00.53 L1-S Station 21-1 B, C, and D Acc4/4 1.06 L1-X X-Band accelerator X-Band2/20.53 S25-Tcav2/00.53 S24-1, 2, & 3 Feedback0 S29 and S30 Feedback0
24
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 LLRF Control and Monitor System Status 1 kW Solid State S-Band Amplifiers – 5 units 1kW amplifier modules currently in test Existing amplifier support design under review Phase and Amplitude Detectors – 11 quad chan units Control Board – Pre production delivered – may require 2 nd round. RF Board – in layout Phase and Amplitude Controllers – 6 units Control board – Sent out for Pre production RF Board – Pre-production in Fab.
25
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 PAD
26
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 PAD Block Diagram Most PADs will consist of 2 RF Modules to down convert 2856MHz to 25.5MHz, a 4 Channel, 16bit, digitizer control board, and an 8 channel 24bit slow analog input. RF Board Mixers Marki Microwave M1-2040MEZ : Amplifiers Sirenza SBW-5089 : Slow ADC TI/BB ADS1218 : Fast ADC LT LTC2208
27
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 PAD RF Power Levels # ADCs RF Power PAD Power Distribution 4 10mW-100mW RF Gun Forward1 10MW 10W-30W RF Gun Probes410MW 10W-30W Beam Phase Cavity2 100mW 30mW L0-AAccelerator2 60MW 120W L0-B Accelerator2 60MW 120W L0-T Transverse Accelerator20.5MW 0.5W-30W L1-S Station 21-1 B, C, and D Acc4 15MW 30W-120W L1-X X-Band accelerator X-Band220MW 2W S25-Tcav210MW 10W S24-1, 2, & 3 Feedback0 S29 and S30 Feedback0
28
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 PAD 4 Chan ADC Board 25.5MHz 4 point IQ Data Analysis – SNR – 76dB Amplitude 76dB Phase Noise Floor from below plots < -147dBc/Hz - SNR 65dB 25.5MHz Cross Talk from below plots < 100dB Channel 0 data: Signal = -7.1dB Noise Level = -72.1dB Channel 1 data: Signal = -112dB Noise Level = -79.3dB Bin Width 1816Hz, 33dB
29
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 PAD Software Different LLRF apps need different calculations There are 5 different algorithms: AVG+STD – calculate average I and Q and variance of I and Q RF WF – calculate average I and Q WF – calculate average of sample RF WF2 – calculate average I and Q of two samples IQ Cal – send 64K raw data waveform Each channel on a PAD can run a different algorithm Each PAD can run in CALIBRATION or RUNNING mode, which use different algorithms
30
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 PAD Software Data acquisition begins via timing trigger Each PAD needs its own trigger so that it can have its own delay 4 channels of 1024 16-bit integers at 102 MHz read in within 2 ms
31
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 PAC
32
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 PAC Block Diagram
33
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 PAC SSB Modulator Tests 58kHz lower side band test – Suppression of fundamental and opposite side band is better than 60dB.
34
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 PAC Software PACs can run in either CALIBRATING or RUNNING mode. A state machine keeps track. If CALIBRATING, calibration waveforms are loaded into FPGA and I and Q gains and offsets can be adjusted. If RUNNING, I and Q gains and offsets are fixed, operational waveforms are loaded into FPGA and I and Q adjustments can be applied at the operational frequency.
35
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 VME
36
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 VME Software Generic Feedback algorithm: Phase and amplitude are calculated from I and Q averages from each channel of the PAD Phases are corrected by phase offset correction Amplitudes are corrected by amplitude power correction Phase and amplitudes are weighted by configurable weighting factors to determine one average phase and amplitude Local or global feedback corrections are applied Corrected phase and amplitude is converted to I and Q Corrected I and Q values are sent to PAC
37
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 VME Software Beam Phasing Cavity algorithm (for Laser Timing): Two sets of I and Q averages arrive (since there are two windows of interest) Phase1 is calculated from I1 and Q1 Phase2 is calculated from I2 and Q2 Measured beam phase is the y-intercept of the equation to the line of phase as a function of FIFO position Frequency is the slope of the line Amplitude is calculated from I1 and Q1 (only) Phase is corrected by phase offset correction Amplitude is corrected by amplitude power correction Local feedback corrections are applied Corrected phase and amplitude is converted to I and Q Corrected I and Q values are sent to laser PAC
38
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 VME Software Other calculations For RF Reference Distribution Phase and amplitude are calculated from I and Q averages from each channel of the PAD Phases are corrected by phase offset correction Amplitudes are corrected by amplitude power correction Standard deviation of I and Q is calculated from I and Q variances from each channel of the PAD
39
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Linac Station 21-1 Tests
40
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Linac 21-1 Test Set-up Power Coupled out from 476MHz MDL drives a 476MHz Amplifier which feeds a 6X Multiplier from 476MHz to 2856MHz. The 2856MHz out drives both the LO generator and the PAC. The 2830.5MHz LO and 102MHz CLK Generator supplies the LO and CLK to the PAD. A CLK output of the PAD drives the PAC CLK. The PAC output drives the SSSB. The SSSB drives the existing IPA chassis The klystron output coupler is used to measure phase and amplitude with the new PAD.
41
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Linac 21-1 Test Results Tests were done in the gallery with no temperature regulation on cables. Average RMS value of 2 second sliding average is 0.068 degrees. Exponential Smoothing Yields the Following Results. Lowest noise is with a time constant of about 2 points.
42
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 END of TALK
43
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 EPICS PANELS Single Pulse Diagnostic Panels for PADs are Running Remaining Software History Buffer Select PVs Multi pulse data analysis, correlation plots Local RF Feedback loops Links to global Feedback loops
44
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 End of LLRF RF Talk Backup for RF Talk Mostly Correct
45
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 DESIGN PHILOSOPHY Reliability is inversely proportional to the number of connectors. Stability is inversely proportional to the number of connectors. Measurement accuracy is inversely proportional to the number of connectors and the amount of Teflon, which is typically found in connectors. Cost of maintenance is proportional to the number of connectors.
46
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Electro-Optical Sampling 170 fs rms Single-Shot Timing Jitter (20 Shots) 200 m thick ZnTe crystal eeee Ti:Sapphire laser Adrian Cavalieri et al., U. Mich. <300 fs e temporal information is encoded on transverse profile of laser beam
47
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 MPS – PPS Issues Addressed by Controls Group Not Reviewed Here Vacuum New vacuum system summary to be fed to each klystron existing MKSU. PPS System Injector modulators will be interlocked by Injector PPS system. PPS requirements for radiation from the injector transverse accelerator needs to be determined. Radiation levels will be measured during testing in the Klystron Test Lab – Feb 06.
48
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Bandwidth of S-Band System Upper Frequency Limit – 10MHz Beam-RF interaction BW due to structure fill time < 1.5MHz S-Band Accelerators and Gun ~10MHz X-Band and S-Band T Cav Structure RF Bandwidth ~ 16MHz 5045 Klystron ~ 10MHz Lower Frequency Limit – 10kHz Fill time of SLED Cavity = 3.5uS about 100kHz Laser – Needs to be measured ~ 10kHz
49
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Noise Levels RF Reference Single Side Band (SSB) Noise Floor 2856MHz RF Distribution -144dBc/Hz -174dBc/Hz @ 119MHz (24x = +28dB +2 for multiplier) 2830.5MHz Local Oscillator -138dBc/Hz Integrated Noise -138dBc/Hz at 10MHz = -65dBc = 32fS rms SNR = 65dB for phase noise Added noise from MIXER (LO noise same as RF) SNR of 62dB ADC noise levels SNR of 70dB – 14bit ADS5500 at 102MSPS
50
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Phase Noise – Linac Sector 0 OLD MASTER OSCILLATOR -133dBc/Hz at 476MHz 340fSrms jitter in 10MHz BW NEW MASTER OSCILLATOR -153dBc/Hz at 476 MHz 34fSrms jitter in 10MHz BW Integrated Noise - Timing Jitter fs rms Integral end 5MHz10kHz Integral start 1M100k10k1k10010 Aug 17, 2004 Sector 30 273033387582 Jan 20, 2006 Sector 2115192020817
51
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Sector 20 RF Distribution Cable Errors Temperature Coefficient of 2.8ppm/ºF and Cable length is 1200ºS/ft All Cables except LASER are less than 100ft Distances feet and errors in degrees S total range RF Hut Down Linac Wall Injector Total Unit Ft degS ft degS ft degS ft degS ft degS DegS Laser 8 0.054 25 0.017 10 0.014 10 0.007 85 0.58 0.68 Gun 8 0.054 25 0.017 10 0.014 10 0.007 40 0.27 0.37 L0-A 8 0.054 25 0.017 10 0.014 10 0.007 30 0.21 0.31 B Phas 8 0.054 25 0.017 10 0.014 10 0.007 20 0.14 0.24 L0-B 8 0.054 25 0.017 10 0.014 10 0.007 20 0.14 0.24 L0-T 8 0.054 25 0.017 10 0.014 10 0.007 10 0.07 0.17 L1-S 8 0.054 25 0.017 50 0.068 0.14 L1-X 8 0.054 25 0.017 60 0.081 0.16 Temperature Variations: RF Hut ±1ºF : Penetration ±0.1ºF : Linac : ±0.2ºF Shield Wall ±0.1ºF : Injector ±1ºF
52
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 RF System Topology / Specifications
53
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 RF Monitor Signal Counts ADC Chan CntChassis Count/Location Distribution (5~2850MHz, 4<500MHz) 4 1Hut RF Gun9 1Kly1.5Hut Beam Phase Cavity2 0.5Hut L0-AAccelerator4 1Kly0.5Hut L0-B Accelerator4 1Kly0.5Hut L0-T Transverse Accelerator41Kly0.5Hut L1-S Station 21-1 B, C, and D Acc6 1Kly1.0Hut L1-X X-Band accelerator X-Band51Kly0.5Hut S25-Tcav41Kly S24-1, 2, & 3 Feedback0 S29 and S30 Feedback0 Total Chassis7Kly6Hut Total into Hut IOC12
54
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 RF Control Signal Counts Distribution(3~2850MHz, 3<500MHz) 6 IQ Mod RF Gun1 Klystron Beam Phase Cavity1 IQ mod L0-AAccelerator1 Klystron L0-B Accelerator1 Klystron L0-T Transverse Accelerator1 Klystron L1-S Station 21-1 B, C, and D accelerators1 Klystron L1-X X-Band accelerator X-Band1 IQ Mod S25-Tcav1 Klystron S24-1, 2, & 3 Feedback3 Klystrons S29 and S30 Feedback2 IQ modulators 476MHz Total modulators11 Fast 8 Slow 19 modulators Totals at ~2856MHz14 modulators Total into Hut IOC14 modulators
55
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 LLRF Control and Monitor System 1 kW Solid State S-Band Amplifiers – 5 units Phase and Amplitude Monitors – 12 units Phase and Amplitude Controllers – 6 units Bunch Length Monitor Interface – Need Specifications
56
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 RF Control RF Control Module consist of the following: Input Coupler, IQ Modulator, Amplifier, Output Coupler Filters for I and Q inputs Required 13 Units Includes Distribution
57
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 RF Monitor Required 13 Chassis for Injector – Includes Distribution LO 2830.5MHz : RF 2856MHz IF 25.5MHz (8.5MHz x 3 in sync with timing fiducial) Double-Balanced Mixer Mixer IF to Amp and then Low Pass Filter Filter output to ADC sampling at 102MSPS 2830.5MHz Local Osc. 2856MHz RF Signal To ADC LTC2208 SNR = 77dBFS 102MSPS
58
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 1 kW Solid State S-Band Amplifiers Design Complete Two Units on the Shelf Modules in house – and tested Support parts – Some parts in house Power Supplies, relays, chassis on order
59
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 SLAC Linac RF – New Control The new control system will tie in to the IPA Chassis with 1kW of drive power available. Reference will be from the existing phase reference line or the injector new RF reference I and Q will be controlled with a 16bit DAC running at 119MHz. Waveforms to the DAC will be set in an FPGA through a microcontroller running EPICS on RTEMS. Existing System
60
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Controls Talk
61
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 LLRF Controls Outline Requirements External Interfaces Schedule Date Needed Prototype Completion Date Hardware Order Date Installation Test Period Design Design Maturity (what reviews have been had) State of Wiring Information State of Prototype
62
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Requirements At 120 Hz, meet phase/amp noise levels defined as: 0.1% rms amplitude 100 fs rms in S-band (fill time = 850 ns) 125 fs rms in X-band (fill time = 100 ns) All tolerances are rms levels and the voltage and phase tolerances per klystron for L2 and L3 are Nk larger, assuming uncorrelated errors, where Nk is the number of klystrons per linac (L2 has 28; L3 has 48)
63
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Engineering Requirements When beam is present, control will be done by beam-based longitudinal feedback (except for T- cavs); when beam is absent, control will be done by local phase and amplitude controller (PAC) Adhere to LCLS Controls Group standards: RTEMS, EPICS, Channel Access protocol Ref: Why RTEMS? Study of open source real-time OSStudy of open source real-time OS Begin RF processing of high-powered structures May 20, 2006
64
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 External Interfaces LLRF to LCLS global control system PVs available for edm screens, archiving, etc over controls network LLRF VME to beam-based longitudinal feedback from feedback: phase and amplitude corrections at 120 Hz over private ethernet from LLRF: phase and amplitude values (internal) LLRF VME to LLRF microcontrollers from VME: triggers, corrected phase and amplitude from microcontrollers: phase and amplitude averaged values at 120 Hz, raw phase and amplitude values for debug
65
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 External Interfaces: Laser - Tcav
66
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 External Interfaces: L2-L3
67
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Design Design maturity (what reviews have been had): RF/Timing DesignRF/Timing Design, DOE Review, August 11, 2004 Akre_FAC_Oct04_RF_TimingAkre_FAC_Oct04_RF_Timing, FAC Review, October, 2004 Low Level RF Controls DesignLow Level RF Controls Design, LCLS Week, January 25-27, 2005 Low Level RFLow Level RF, Lehman Review, May 10-12, 2005 LLRF Plans for Development and Testing of ControlsLLRF Plans for Development and Testing of Controls, LCLS Week, July 21, 2005 Low Level RF DesignLow Level RF Design, Presentation for Controls Group, Sept. 13, 2005 LLRF Preliminary Design reviewLLRF Preliminary Design review, SLAC, September 26, 2005 LCLS LLRF Control System - KotturiLCLS LLRF Control System - Kotturi, LLRF Workshop, CERN, October 10-13, 2005 LCLS LLRF System - HongLCLS LLRF System - Hong, LLRF Workshop, CERN, October 10-13, 2005 LLRF and Beam-based Longitudinal Feedback Readiness - Kotturi/AkreLLRF and Beam-based Longitudinal Feedback Readiness - Kotturi/Akre, LCLS Week, SLAC, October 24-26, 2005 LCLS Week LLRF and feedback - Kotturi/AllisonLCLS Week LLRF and feedback - Kotturi/Allison, LCLS Week, SLAC, October 24-26, 2005 LLRFLLRF, LCLS System Concept Review/Preliminary Design Review, SLAC, November 16-17, 2005 CommentsComments LLRF Beam Phase Cavity Preliminary Design reviewLLRF Beam Phase Cavity Preliminary Design review, SLAC, November 30, 2005 Docs at: http://www.slac.stanford.edu/grp/lcls/controls/global/subsystems/llrf State of wiring: percent complete Captar input will be given at time of presentation State of prototype: PAD (1 chan ADC) and PAC boards built (shown on next pages).Testing.
68
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 PAD – the monitor board
69
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 PAD – the monitor board
70
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 PAC – the control board
71
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 PAC – the control board
72
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Additional Slides The following two pages show an overview of the LLRF control modules. From these diagrams, counts of module types, as well as function and location are seen.
73
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Overview of LLRF at Sector 20
74
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Overview of LLRF at Sector 24
75
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Beam Phase Monitor R. Akre A. Haase B. Hong D. Kotturi V. Pacak H. Schwarz Preliminary Design Review November 30, 2005
76
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Outline Purpose Specifications System outline Cavity Noise Levels Analysis Long Term Drifts Summary
77
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Laser Timing Stabilization Feedback Beam timing information from the beam phase monitor will be used to apply corrections to the timing of the laser on the RF Gun.
78
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Specifications Short term (2 second) timing jitter: 100fS rms Long term (4 day) timing jitter: ±1pS Range of the above accuracies is ±10pS Data available at 120Hz
79
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 System Outline
80
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Cavity Frequency = 2856MHz Q = 6000 Time Constant = 700nS Temperature Coefficient = 50kH/°C
81
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 System Critical Noise Levels and Bandwidths Cavity Signal – Bandwidth 500kHz Local Oscillator – Noise Floor –143dBc/Hz IF Filter – Bandwidth 4MHz ADC – SNR at input 76dB
82
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 System Critical Noise Levels and Bandwidths
83
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 ADC Linear Technologies LTC2208 16Bit 130MHz SNR 77.6dBFS 30MHz in Clock 130MHz SFDR 95dB
84
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Analysis Phase Calculated Beam Phase at Beam Time Measured Data Point 1 Measured Data Point 2 Time
85
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 I & Q from Waveform Digital Down Mixing and Normalization Digitized Input Signal
86
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Optimization Optimal Points to use for analysis is 16 point average at points 18 and 120
87
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Analysis Results Standard deviation of result = 1.1e-4 or 6.3fS rms jitter Signal level 20dB lower will give 63fS rms jitter Sensitivity to frequency change = 0.6fS/2.8kH freq change Sensitivity to timing change over +-10deg = 1:1
88
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 80ft (1M deg) of ½ inch superflex has TC of 4ppm/degC Water temp tolerance is +-0.1degF = +-400fS drift Long Term Drifts
89
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Summary Short term (2 second) timing jitter: 100fS rms 63fS rms Long term (4 day) timing jitter: ±1pS ±0.8pS Range of the above accuracies is ±10pS Results Data available at 120Hz Simple algorithm in integer arithmetic will allow this
90
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Feedback Page 1 LOCAL FEEDBACK
91
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Feedback Page 2 LOCAL FEEDBACK GLOBAL FEEDBACK
92
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Feedback Page 3 LOCAL FEEDBACK GLOBAL FEEDBACK
93
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Feedback Page 4 GLOBAL FEEDBACK
94
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Feedback Page 5 GLOBAL FEEDBACK
95
Ron Akre, Dayle Kotturi LCLS LLRF Reviewakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu September 19, 2006 Feedback Page 6
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.