Download presentation
Presentation is loading. Please wait.
Published byPercival Claud Sparks Modified over 9 years ago
1
Metro Transit-Centric Visualization for City Tour Planning Pio Claudio and Sung-Eui Yoon
2
2 Motivation Tourist Destinations Map Metro Map Switching between maps forces users to manually map points between different coordinate spaces Display a holistic combined view of a transportation map and a tourist map
4
Outline Motivation Related Work Our Approach Results 4
5
Related Work Automatic Generation of Octilinear Metro Layouts – Mass-Spring[Hong et al. 06], Hill Climbing[Stott et al. 11] – Mixed Integer Programming: Nöllenburg et al. 2011 Map Warping – Image Warping: Böttger et al. 2008 – Helmert Transform: Jenny et al. 2011 5 http://davis.wpi.edu/~matt/courses/morph/2d.htm http://designmuseum.org/design/london-transport
6
Combining Different Maps 6 Related Work Böttger et al, 2008Reilly et al., 2004
7
Our Approach INPUT: Metro MapINPUT: Tourist DestinationsOctilinear LayoutMap WarpingDestinations Summary 7
8
Framework 8 POI Data Run-time Map Hierarchical Clustering Map Warping Octilinear Layout Visual Worth Trip Websites
9
Determining Popular Regions Focus + Context Wider spaces to popular regions Graphical Fisheye Views of Graphs. Sarkar et al. Which are popular regions? 9
10
10 Determining Popular Regions: Visual Worth Kernel Density Estimation 1.Tourist destinations (Points-of- Interest POI) 2.Highly ranked tourist destinations (rank r) 3.Nearby metro-stations (proximity ρ) : POI Visual Worth high low
11
Framework 11 POI Data Run-time Map Hierarchical Clustering Map Warping Octilinear Layout Trip Websites Visual Worth
12
Octilinear Layout Computation Why Octilinear Layout? – Clean and readable schematic representation Mixed-Integer Programming [Nöllenburg et al. 2011] – A set of design constraints are satisfied to find a global solution to layout optimization 12 Input Variable Apply variable edge lengths according to visual worth 12 Uniform Octilinear
13
Framework 13 POI Data Run-time Map Hierarchical Clustering Map Warping Octilinear Layout Trip Websites Visual Worth
14
Map Warping Put tourist map elements in a single map space Map warping – Use the metro stations as control points – Solve for affine transformation parameters – Apply transformation and interpolation to original map points 14 Input Warped Map
15
Framework 15 POI Data Run-time Map Hierarchical Clustering Map Warping Octilinear Layout Trip Websites Visual Worth
16
Displaying all tourist destinations will clutter the map Display only relevant destinations at a given view configuration (visual worth) Hierarchical Clustering 16 Run a hierarchical clustering algorithm [Goldberger2008]
17
Runtime Map Determine a graph cut which displays largest clusters fitting the view window Display top N rated clusters (visual worth) 17
18
Results Default zoom levelZoomed-in view 18
20
20 Results: User Study
21
Summary Holistic visualization technique – Combines tourist destinations map – transportation (metro) map Octilinear Layout for effective navigation Identify and highlight popular tourist areas 21
22
Connecting paths to POIs Adaptive map layout for different display sizes 22 Future work
23
NRF-2013R1A1A2058052 DAPA/ADD (UD110006MD) MEST/NRF (2013-067321) IT R&D program of MOTIE/KEIT [10044970] 23 Acknowledgements
24
Thank you for listening! Paper, videos, source code(coming soon)! Visit our project homepage: sglab.kaist.ac.kr/MetroVis 24
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.