Presentation is loading. Please wait.

Presentation is loading. Please wait.

© 2006 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice Profiling and Modeling Resource Usage.

Similar presentations


Presentation on theme: "© 2006 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice Profiling and Modeling Resource Usage."— Presentation transcript:

1 © 2006 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice Profiling and Modeling Resource Usage of Virtualized Applications Timothy Wood 1, Lucy Cherkasova 2, Kivanc Ozonat 2, and Prashant Shenoy 1 1 University of Massachusetts, Amherst 2 HPLabs, Palo Alto

2 2 Virtualized Data Centers Benefits −Lower hardware and energy costs through server consolidation −Capacity on demand, agile and dynamic IT Challenges −Apps are characterized by a collection of resource usage traces in native environment −Virtualization overheads −Effects of consolidating multiple VMs to one host Important for capacity planning and efficient server consolidation

3 3 Application Virtualization Overhead Many research papers measure virtualization overhead but do not predict it in a general way: −A particular hardware platform −A particular app/benchmark, e.g., netperf, Spec or SpecWeb, disk benchmarks −Max throughput/latency/performance is X% worse −Showing Y% increase in CPU resources How do we translate these measurements in “ what is a virtualization overhead for a given application ”? New performance models are needed

4 4 Predicting Resource Requirements Most overhead caused by I/O −Network and Disk activity Xen I/O Model 2 components −Dom0 handles I/O Must predict CPU needs of: 1. Virtual machine running the application 2. Domain 0 performing I/O on behalf of the app Requires several prediction models based on multiple resources VM Domain0

5 5 Problem Definition T1T1 CPU T1T1 Network T1T1 Disk Native Application Trace T1T1 VM CPU T1T1 Dom0 CPU Virtualized Application Trace ??

6 6 Why Bother? More accurate cost/benefit analysis −Capacity planning and VM placement Impossible to pre-test some critical services Hypervisor comparisons −Different platforms or versions App 1 App 2 VM 1 VM 2Dom 0 + NativeVirtual CPU Util

7 7 Our Approach Automated robust model generation Run benchmark set on native and virtual platforms −Performs a range of I/O and CPU intensive tasks −Gather resource traces Build model of Native --> Virtual relationship −Use linear regression techniques −Model is specific to platform, but not applications Automate all the steps in the process Can apply this general model to any application’s traces to predict its requirements Native system usage profile Virtual system usage profile model ?

8 8 Microbenchmark Suite Focus on CPU-intensive and different types of I/O-intensive client-server apps Benchmark activities: −Network-intensive: download and upload files −Disk-intensive: read and write files −CPU-intensive Need to break correlations between resources −High correlation between packets/sec and CPU time Simplicity of implementation −based on httperf, Apache Jmeter, Apache Web Server and PHP Microbenchmarks are easy to run in a traditional data center environment

9 9 Model Generation native virtual … … Model VM: Model Dom-0: Set of equations to solve: Set of equations to solve: model ?

10 10 Building Robust Models Outliers can considerably impact regression models −Creates model that minimizes absolute error −Must use robust regression techniques to eliminate outliers Not all metrics are equally significant −Starts with 11 metrics: 3 CPU, 4 Network, and 4 Disk −Use stepwise regression to find most significant metrics Evaluate outcome of microbenchmark runs and eliminate erroneous and corrupted data Correct data set is a prerequisite for building an accurate model

11 11 Performance Evaluation: Testbed Details Two hardware platforms −HP ProLiant DL385, 2-way AMD Opteron, 2.6GHz, 64-bit −HP ProLiant DL580, 4-way Intel Xeon, 1.6GHz, 32-bit Two applications: −RUBiS (auction site, modeled after e-Bay) −TPC-W (e-commerce site, modeled after Amazon.com) Monitoring −Native: sysstat −Virtual: xenmon and xentop −Measurements: 30 sec intervals

12 12 Questions Why this set of metrics? Why these benchmarks? Why this process of model creation? Model accuracy

13 13 Importance of Modeling I/O Is it necessary to look at resources other than just total CPU? How accurate such a simplified model for predicting the CPU requirement of VM ? Definitely need multiple resources! 5% 65%

14 14 Benchmark Coverage Using a subset of benchmarks leads to a poor accuracy model Why these benchmarks?

15 15 Automated Benchmark Error Detection Some benchmarks run incorrectly −Rates too high −Background activity Remove benchmarks with abnormally high error rates Automatically remove bad benchmarks without eliminating useful data

16 16 Model Accuracy Intel hardware platform Train the model using simple benchmarks Apply to RUBiS web application 90% of Dom0 predictions within 4% error 90% of VM predictions within 11% error

17 17 Second Hardware Platform AMD, 64bit dual CPU, 2.6Ghz Produces different model parameters Predictions are just as accurate

18 18 Different Platform’s Virtualization Overhead Different platforms exhibit different amount of CPU overhead 1.7 x nat_CPU 1.4 x nat_CPU To predict virtualization overhead for different hardware platforms require building their own models

19 19 Summary Proposed approach builds a model for each hardware and virtualization platform. It enables comparison of application resource requirements on different hardware platforms. Interesting additional application: helps to assess and compare “performance” overhead of different virtualization software releases.

20 20 Future Work Refine a set of microbenchmarks and related measurements (what is a practical minimal set?) Repeat the experiments for VMware platform Linear models – are they enough? −Create multiple models for resources with different overheads at different rates Evaluation of virtual device capacity Define composition rules for estimating resource requirements of collocated virtualized applications

21 21 Questions?


Download ppt "© 2006 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice Profiling and Modeling Resource Usage."

Similar presentations


Ads by Google