Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 INSTITUTE of SOLID STATE PHYSICS Founded 1972 18 Laboratories and Theoretical Department Staff - 180, Scientific staff - 100 In the field of atomic and.

Similar presentations


Presentation on theme: "1 INSTITUTE of SOLID STATE PHYSICS Founded 1972 18 Laboratories and Theoretical Department Staff - 180, Scientific staff - 100 In the field of atomic and."— Presentation transcript:

1 1 INSTITUTE of SOLID STATE PHYSICS Founded 1972 18 Laboratories and Theoretical Department Staff - 180, Scientific staff - 100 In the field of atomic and plasma physics 1.Optics and Spectroscopy 2. Atomic Spectroscopy 3. Metal Vapour Lasers

2 2 Laboratory Atomic Spectroscopy 1. Employment of HCD for analytical investigations – analyses of layer-by-layer surface of the complex material.- Dr. V. Mihailov 2. Investigation of plasma electron spectroscopy and applications – Dr. P. Pramatarov, Dr. M. Stefanova 3. Atomic constants, atomic spectroscopy and application – Prof. K. Blagoev 4. Quantum optics – Dr. E. Dimova

3 3 Atomic structure, atomic constants G. Malcheva K. Blagoev

4 4 Experimental methods for lifetimes and transition probabilities determination Radiative lifetimes - time evolution of the population * Beam foil/laser * time resolved method with: ++ electron excitation ++ laser excitation ( LIF) -width of the excited states + Hanle method Transition probabilities – branching fractions  I = 1/  A ik A ik = (1/  i )(I i /  I j )

5 5 Radiative lifetimes of excited states - time evolution of the population * Beam foil/laser * time resolved method with: ++ electron excitation ++ laser excitation ( LIF) -width of the excited states + Hanle method

6 6 Motivation Obtaining new information about atomic structure and radiative properties; New or more precise data for radiative lifetimes and transition probabilities in application for: laser physics, plasma physics and especially for astrophysics Verification of theoretical methods

7 7 List of the investigated atomic spectra Radiative lifetimes of high lying excited states of NeII,ArII,KrII,XeII – delayed coincidence method with pulsed electron excitation - Radiative lifetimes and transition probabilities of atoms and ions of IIB, IIA group Hg I - LIF and DC methods and HF calculations, Hg II - Delayed coincidence method with electron excitation, Hg III – Delayed coincidence method, Cd I, II - LIF method, HF calculation, branching ratio, Cd III - Delayed coincidence method with electron excitation, Zn I, I – LIF method and HF calculations, AgII, CuII – transition probabilities, branching ratio Radiative lifetimes of some transition elements Zr I, Zr II, III – LIF method and HF calculation Hf I, Hf III – LIF method and HF calculation Nb I LIF, calculations YI, Y III LIF, calculations Tb I, LIF in progress

8 8

9 9 VACUUM SYSTEM GAS INLET POWER SUPPLY ELECTRON GUN MONOCHROMATOR PMP GENERATORTIME – AMPLITUDE CONVERTOR AMPLIFIER ADCPC CAMAC AMPLIFIER  t=10 ns

10 10 Table 2. Radiative Lifetimes of n 3 P states of HgI(ns) ExperimentTheory State[1] DC 2002 [2] Hanle, 1975 [3],  =1/  A ik 1987 [4] 8p 3 P 0 248213 8p 3 P 1 1676142177 8p 3 P 2 15695145 9p 3 P 0 339 9p 3 P 1 13579124 9p 3 P 2 41 10p 3 P 2 37544 1.K. Blagoev et al Proc SPIE,v5226, 164(2002), Proc. EGAS34,186(2002) 2.E. Alipieva et al Opt. Sprctr. 43,529(1977); 3. W. J. Alford et al Phys. Rev A36, 641(1987); 4. P. Hafner et al J. Phys. B 11, 2975(1978)

11 11 ExperimentTheory State[1] LIF [2] e-ph [3]  =1/  Aik [4] BF [5] BF [6] 6p 1 P1.31.351.271.2 7p 1 P2612 8p 1 P7238 9p 1 P10 10p 1 P55.65141 1. K. Blagoev et al proc. SPIE, v. 5256,164(2002); 2. G. C. King et al J. Phys. B B8, 365(1975); 3. W. J. Alford et al Phys. Rev A36, 641(1987); 4. E. H. Pinnington et al Canadian J of Physics, 66, 960(1988); 5. T. Anderson et al JQSRT 13,369(1973); 6. P. Hafner et al J. Phys. B 11, 2975(1978) Table 1. Radiative Lifetimes of np 1 P states of HgI(ns).

12 12 ExperimentTheory State[1] DC [2] e-ph [3]  =1/  Aik [4] BF [5] BF [6] 6p 1 P 1 1.31.351.271.2 7p 1 P 1 2612 8p 1 P 1 7238 9p 1 P 1 10 5d 9 6s 2 6p 1 P 1 5.3 10p 1 P 1 55.65141 Table 1a. Radiative Lifetimes of np P states of HgI(ns). K.Blagoev et al Proc. SPIE, v4397, p. 256

13 13 Delay generator Helmholtz coil Top view Ablation laser Nd:YAG laser (A) Rotating Zr target MCP PMT Monochromator Transient Digitizer Computer Trigger KDP BBO Side view Trigger Nd:YAG laser (B) SBS compressor Dye laser Time Resolved Laser Induced Fluorescence Equipment in Lund Laser Centre

14 14 H2H2 Raman cell Lens Pelin-Broca prism Generation of necessary frequencies using second, third harmonic and Stokes and anti-Stokes Raman components.

15 15

16 16

17 17 List of the investigated atomic spectra Radiative lifetimes of high lying excited states of NeII,ArII,KrII,XeII – delayed coincidence method with pulsed electron excitation - Radiative lifetimes and transition probabilities of atoms and ions of IIB, IIA group Hg I - LIF and DC methods and HF calculations, Hg II - Delayed coincidence method with electron excitation, Hg III – Delayed coincidence method, Cd I, II - LIF method, HF calculation, branching ratio, Cd III - Delayed coincidence method with electron excitation, Zn I, I – LIF method and HF calculations, AgII, CuII – transition probabilities, branching ratio Radiative lifetimes of some transition elements Zr I, Zr II, III – LIF method and HF calculation Hf I, Hf III – LIF method and HF calculation Nb I - LIF, calculations YI, Y III - LIF, calculations Tb I - LIF in progress

18 18 Table2. Excitation schemes LevelE, cm -1 Starting level Starting level, cm -1 exc (nm) air obs (nm) air 4d5p z 1 D 2 o 53647.214d 2 1 D 2 5741.5208.68286.9 33 4d5p z 3 D 1 o 55614.424d 2 3 P 0 8062.0210.23268.6 33 4d5p z 3 D 2 o 56435.654d 2 3 P 1 8325.6207.79265.6 33 4d5p z 3 D 3 o 57346.834d 2 3 P 2 8838.2206.08264.4 33 4d5p z3F 2 o 55555.634d 2 3 P 1 8325.6211.66269.0 33 Table 1. Radiative Lifetimes of Zr III excited levels (data in ns). Level Energy,ExperimentTheory. cm-1This work [7][3] 4d5p z 1 D 2 o 53647.211.70(20)1.521.531.48 4d5p z 3 D 1 o 55614.421.10(15)0.950.960.91 4d5p z 3 D 2 o 56435.651.15(10)0.920.940.89 4d5p z 3 D 3 o 57346.831.05(15)0.920.930.89 4d5p z3F 2 o 55555.631.90(20)1.55 1.51 R. Mayo, J. Campos, M. Ortiz, H. Xu, S. Svanberg, G. Malcheva and K. Blagoev Eur. Phys. J: D40,169,2006.

19 19 A typical experimental time-resolved signal from the 53647.21 cm−1 level in Zr III.

20 20

21 21

22 22 Experimental methods for lifetimes and transition probabilities determination Radiative lifetimes - time evolution of the population * Beam foil/laser * time resolved method with: ++ electron excitation ++ laser excitation ( LIF) -width of the excited states + Hanle method Transition probabilities – branching fractions  I = 1/  A ik, A ik = (1/  i )(I i /  I j )

23 23 Принцип на действие на лазерно-индуцираната спектроскопия (LIBS)

24 24 Nd-YAG Laser Monochromator Photodetector AmplifierDelay Oscilloscope OMA III Computer Laser parameters: 1064 nm, 20 Hz, t = 7 ns, E = 240 mJ. Transition probabilities - LIBS

25 25 Time dependence of Au I and Au II spectra

26 26 LIBS in archaeology

27 27 Nd:YAG laser (Quanta Ray GC3),λ = 1064 nm E = 700-800 mJ T≈ 10 ns; 10 Hz Eschelle spectrometer (Mechelle 5000) Sample

28 28

29 29

30 30 Spectrum from silver sample obtained by Meshele 5000

31 31 LIBS in Art

32 32 LIBS

33 33 J. Campos, M. Ortiz,R. Mayo - Universidad Complutense de Madrid, Spain; -H. L. Xu, S. Svanberg, L. Engstr¨om, H. Lundberg - Lund Institute of Technology, Lund, Sweden - H. Nilsson - Lund Observatory, Lund, Sweden -E. Biémont, P. Quinet, V. Fivet - Université de Liège, Liège 1, Belgium -P. Palmeri - Astrophysique et Spectroscopie, - Universit´e de Mons– UMONS, Mons, Belgium -Acknowledgements -Laser lab in Europe -Bulgarian National Science Foundation

34 34 Thank you


Download ppt "1 INSTITUTE of SOLID STATE PHYSICS Founded 1972 18 Laboratories and Theoretical Department Staff - 180, Scientific staff - 100 In the field of atomic and."

Similar presentations


Ads by Google