Presentation is loading. Please wait.

Presentation is loading. Please wait.

Probing isomer interconversion in anionic water clusters using an Ar-mediated pump- probe approach T. L. Guasco, G. H. Gardenier, L. R. McCunn, B. M. Elliott,

Similar presentations


Presentation on theme: "Probing isomer interconversion in anionic water clusters using an Ar-mediated pump- probe approach T. L. Guasco, G. H. Gardenier, L. R. McCunn, B. M. Elliott,"— Presentation transcript:

1 Probing isomer interconversion in anionic water clusters using an Ar-mediated pump- probe approach T. L. Guasco, G. H. Gardenier, L. R. McCunn, B. M. Elliott, and M. A. Johnson

2 How do water clusters bind an excess electron? Multiple Isomers for Water Cluster Anions 0.00.10.20.30.40.50.60.70.80.91.01.1 Photoelectron Yield Electron Binding Energy (eV) II I

3 How do water clusters bind an excess electron? Multiple Isomers for Water Cluster Anions

4 How do water clusters bind an excess electron? Multiple Isomers for Water Cluster Anions What are the structural characteristics of the different isomer classes? Isomer I shows a single bound water molecule with AA binding motif What are the barriers for interconversion? ? ?

5 What are the structural characteristics of the different isomer classes? How do water clusters bind an excess electron? Isomer I shows a single bound water molecule with AA binding motif Multiple Isomers for Water Cluster Anions What are the barriers for interconversion? ? ?

6 I ' + m Ar [I, I ', II ·Ar m ] [I ' ] ‡ ·Ar m I II Isomer Selective Vibrational Excitation PES Probes Isomer distribution of quenched ensemble Rapid quenching by Ar evaporation

7 I'I' I, I ', II [ I']‡[ I']‡ I II Isomer Selective Vibrational Excitation PES Probe (H 2 O) n  ·Ar m [(H 2 O) n  ] ‡ ·Ar m (H 2 O) n  + m Ar Rapid quenching by Ar evaporation

8 Starting point: (H 2 O) 6  photoelectron spectrum at 1064 nm Compare to: (H 2 O) 6  ·Ar 7 photoelectron spectrum at 1064 nm Adding argon atoms kills isomer II. 0.00.10.20.30.40.50.60.70.80.91.01.1 Photoelectron Yield Electron Binding Energy (eV) II I

9 Photoelectron Imager Nd:YAG Laser (1064 nm) e - Gun OPO/OPA Laser (tunable 600-4500 cm -1 ) Time-of-flight Mass Spectrometer Reflectron H 2 O / Ar Expansion tandem time-of-flight mass spectrometer vibrational predissociation spectroscopy photoelectron spectroscopy

10 (H 2 O) 6 - ·Ar 7 + h → (H 2 O) 6  + 7 Ar (H 2 O) 6  + h → (H 2 O) 6 + e  Infrared excitation followed by photoelectron velocity-map imaging 1064 nm 3350 cm -1

11 [I ·Ar 7 ] [I] ‡ ·Ar 7 3200 340036003800 Photon Energy (cm -1 ) Ar evaporation I II PES Probe First study of photoisomerization (H 2 O) 6  ·Ar 7 Only has Isomer I + 7 Ar

12 (H 2 O) 6  ·Ar 7 3200 340036003800 Photon Energy (cm -1 ) 3350 cm -1

13 Two-laser experiment: (H 2 O) 6  ·Ar 7 + 3350 cm -1 (Isomer I ) → (H 2 O) 6  + 7 Ar photoelectron spectrum of daughter fragment (H 2 O) 6  at 1064 nm Infrared excitation of the cluster does not induce isomerization bare (H 2 O) 6 - (H 2 O) 6 - Ar 7 parent (H 2 O) 6 - daughter 0.00.10.20.30.40.50.60.70.80.91.01.1 Photoelectron Yield Electron Binding Energy (eV) (H 2 O) 6  ·Ar 7 II I

14 ? ?

15 [I ·Ar 7 ] [I] ‡ ·Ar 7 3200 340036003800 Photon Energy (cm -1 ) Ar evaporation I II PES Probe First study of photoisomerization (H 2 O) 6  ·Ar 7 Only has Isomer I + 7 Ar FAILED!

16 3308 cm -1 (H 2 O) 7  ·Ar m

17 [I, I ', II ·Ar 8 ] [I ' ] ‡ ·Ar 8 Ar evaporation 3308 cm -1 I ·Ar II ·Ar I ' ·Ar + 7 Ar Isomer I ' Vibrational Excitation PES Probe Photoisomerization in (H 2 O) 7  ·Ar 8

18 (H 2 O) 7 - Ar 8 parent (H 2 O) 7 - Ar (H 2 O) 7 - Ar daughter 0.00.20.40.60.81.0 Photoelectron Yield Electron Binding Energy (eV) Conversion from Isomer I’ to I occurs!! (H 2 O) 7  ·Ar 8 II I I’ Two-laser experiment: (H 2 O) 7  ·Ar 8 + 3308 cm -1 (Isomer I ’) → (H 2 O) 7  ·Ar + 7 Ar photoelectron spectrum of daughter fragment (H 2 O) 7  ·Ar at 1064 nm

19 I ' ·Ar + 7 Ar II ·Ar [I, I ', II ·Ar 8 ] [I ' ] ‡ ·Ar 8 Ar evaporation 3308 cm -1 Isomer I ' Vibrational Excitation PES Probe Photoisomerization in (H 2 O) 7  ·Ar 8 SUCCESS! I ·Ar

20

21 b II (H 2 O) 7 - Parent (H 2 O) 7 - Isomer I (H 2 O) 7 - Isomer II I (H 2 O) 7  ·Ar m m = 4 m = 0 1592 cm -1 0.00.20.40.60.81.0 Photoelectron Yield Electron Binding Energy

22 (H 2 O) 7 - Isomer II (H 2 O) 7 - Daughter Two-laser experiment: (H 2 O) 7  ·Ar 3 + 1592 cm -1 (Isomer II ) → (H 2 O) 7  + 3 Ar photoelectron spectrum of daughter fragment (H 2 O) 8  at 1064 nm Conversion from Isomer II to I occurs!! (H 2 O) 7  ·Ar 3 0.00.20.40.60.81.0 0 2000 4000 6000 8000 Photoelectron Counts Electron Binding Energy (eV) II I I'I'

23 [II] ‡ Argon evaporation traps geometry I II I'I' 1592 cm -1 [I, I ', II ·Ar 3 ] ? SUCCESS!

24 Conclusions New technique for monitoring isomer conversion in anions Conversion from Isomer I’ to I does occur in (H 2 O) 7  ·Ar 8 when symmetric OH stretch of I’ is excited, thus setting a barrier maximum at 3308 cm -1 Conversion from Isomer II to I does occur in (H 2 O) 7  ·Ar 3 when II ’s HOH bend is excited, thus setting a barrier maximum at 1592 cm -1 Isomer I Isomer II

25 P451 cragnavy

26 Acknowledgements Department of Energy National Science Foundation Prof. Mark Johnson Prof. Gary Weddle Joe Bopp Rob Roscioli Rachael Relph Kristin Breen Helen Gerardi Michael Kamrath Jennifer Laaser

27 3308 cm -1


Download ppt "Probing isomer interconversion in anionic water clusters using an Ar-mediated pump- probe approach T. L. Guasco, G. H. Gardenier, L. R. McCunn, B. M. Elliott,"

Similar presentations


Ads by Google