Presentation is loading. Please wait.

Presentation is loading. Please wait.

Non-Gaussian signatures in cosmic shear fields Masahiro Takada (Tohoku U., Japan) July 6 th IAP Based on collaboration with Bhuvnesh Jain (Penn) (MT.

Similar presentations


Presentation on theme: "Non-Gaussian signatures in cosmic shear fields Masahiro Takada (Tohoku U., Japan) July 6 th IAP Based on collaboration with Bhuvnesh Jain (Penn) (MT."— Presentation transcript:

1 Non-Gaussian signatures in cosmic shear fields Masahiro Takada (Tohoku U., Japan) July 6 th 07 @ IAP Based on collaboration with Bhuvnesh Jain (Penn) (MT & Jain 04, MT & Jain 07 in prep.) Sarah Bridle (UCL) (MT & Bridle 07, astro-ph/0705.0163) Also see the poster of Nobuhiro Okabe (Tohoku) for the observational results for cluster lensing using Subaru data

2 Outline of this talk What is cosmic shear tomography? Non-Gaussian errors of cosmic shear fields and the higher-order moments Parameter forecast including non-Gaussian errors Combining WLT and cluster counts Summary

3 Cosmological weak lensing – cosmic shear present z=z s z=z l z= 0 past Large-scale structure observables Arises from total matter clustering –Not affected by galaxy bias uncertainty –well modeled based on simulations (current accuracy, <10% White & Vale 04) A % level effect; needs numerous (~10 8 ) galaxies for the precise measurements

4 Weak Lensing Tomography Subdivide source galaxies into several bins based on photo- z derived from multi-colors (e.g., Massey etal07) in each bin needs accuracy of ~0.1% Adds some ``depth’’ information to lensing – improve cosmological paras (including DE) +  m (z) (e.g., Hu 99, 02, Huterer 01, MT & Jain 04)

5 Tomographic Lensing Power Spectrum Tomography allows to extract redshift evolution of the lensing power spectrum. A maximum multipole used should be like l_max<3,000

6 Tomographic Lensing Power Spectrum (contd.) Lensing PS has a less feature shape, not like CMB –Can’t better constrain inflation parameters (n_s and alpha_s) than CMB –Need to use the lensing power spectrum amplitudes to do cosmology: the amplitude is sensitive to A_s,  de0 (or  m0 ), w(z).

7 Lenisng tomography (condt.) WLT can be a powerful probe of DE energy density and its redshift evolution. Need 3 z-bins at least, if we want to constrain DE model with 3 parameters (  _de,w0, wa) Less improvement using more than 4 z-bins, for the 3 parameter DE model

8 Non-linear clustering Most of WL signal is from small angular scales, where the non-linear clustering boosts the lensing signals by an order of magnitude (Jain & Seljak97). Large-scale structures in the non-linear stage are non-Gaussian by nature. 2pt information is not sufficient; higher-order correlations need to be included to extract all the cosmological information Baryonic physics: l>10^3 Non-linear clustering l_max~3000

9 Non-Gaussianity induced by structure formation Linear regime O(  )<<1; all the Fourier modes of the perturbations grow at the same rate; the growth rate D(z) –The linear theory, based on FRW + GR, gives robust, secure predictions Mildly non-linear regime O(  )~1; a mode coupling between different Fourier modes is induced –The perturbation theory gives the specific predictions for a CDM model Highly non-linear regime; a more complicated mode coupling –N-body simulation based predictions are needed (e.g., halo model) Correlations btw density perturbations of different scales arise as a consequence of non-linear structure formation, originating from the initial Gaussian fieldsCorrelations btw density perturbations of different scales arise as a consequence of non-linear structure formation, originating from the initial Gaussian fields However, the non-Gaussianity is fairly accurately predictable based on the CDM modelHowever, the non-Gaussianity is fairly accurately predictable based on the CDM model

10 Aspects of non-Gaussianity in cosmic shear Errors in cosmic shear are non-Gaussian –Including non-Gaussian errors degrade the cosmological constraints? –Realize more realistic ability to constrain cosmological parameters –The dependences for survey parameters (e.g., shallow survey vs. deep survey) Yet, adding the NG information, e.g. carried by the bispectrum, is useful?

11 Covariance matrix of PS measurement Most of lensing signals are from non-linear scales: the errors are non-Gaussian PS covariance describes correlation between the two spectra of multipoles l 1 and l 2 (Cooray & Hu 01), providing a more realistic estimate of the measurement errors The non-Gaussian errors for PS arise from the 4-pt function of mass fluctuations in LSS l1l1 l2l2 l1l1 l2l2 l2l2 l1l1 l1l1 l2l2 Gaussian errors  Non-Gaussian errors  (MT & Jain 07 in prep.)

12 Correlation coefficients of PS cov. matrix Diagonal: Gaussian Off-diagonal: NG, 4- pt function 30 bins: 50<l<3000 If significant correlations, r_ij  1 The NG is stronger at smaller angular scales The shot noise only contributes to the Gaussian (diagonal) terms, suppressing significance of the NG errors w/o shot noise with shot noise

13 Correlations btw Cl’s at different l’s Principal component decomposition of the PS covariance matrix

14 Power spectrum with NG errors The band powers btw different ells are highly correlated (also see Kilbinger & Schneider 05) NG increases the errors by up to a factor of 2 over a range of l~1000 ell 10^4, the errors are close to the Gaussian cases (in z-space as well for WLT)

15 Signal-to-noise ratio: SNR Data vector: power spectra binned in multipole range, l_min<l<l_max, (and redshifts) In the presence of the non-Gaussian errors, the signal-to- noise ratio for a power spectrum measurement is For a larger area survey (f_sky ) or a deeper survey (n_g ), the covariance matrix gets smaller, so the signal-to-noise ratio gets increased; S/N

16 Signal-to-ratio: SNR(contd.) Multipole range: 50<l<l_max Non-gaussian errors degrade S/N by a factor of 2 This means that the cosmic shear fields are highly non-Gaussian (Cooray & Hu 01; Kilbinger & Schneider 05) Gaussian Non-Gaussian 50<l<l_max

17 The impact on cosmo para errors  _de w_0 w_a n_s ….  _mh^2  _bh^2 We are working in a multi-dimensional parameter space (e.g. 7D) error ellipse  _de w_0 w_a n_s ….  _mh^2  _bh^2 Non-Gaussian Error Volume of the ellipse: V NG  2V G Marginalized error on each parameter  length of the principal axis:  NG ~ 2^(1/N p )  G (reduced by the dim. of para space) –Each para is degraded by slightly different amounts –Degeneracy direction is slightly changed

18 An even more direct use of NG: bispectrum An even more direct use of NG: bispectrum given as a function of triangles given as a function of separation l Bernardeau+97, 02, Schneider & Lombardi03, Zaldarriaga & Scoccimarro 03, MT & Jain 04, 07, Kilbinger & Schneider 05

19 A more realistic parameter forecast MT & Jain in prep. 07 WLT (3 z-bins) + CMB Parameter errors: PS, Bisp, PS+Bisp –G:  (  _de)=0.015, 0.014, 0.010  NG: 0.016(7%), 0.022(57), 0.013(30) –  (w0)= 0.18, 0.20, 0.13  0.19(6%), 0.29(45), 0.15(15) –  (wa)= 0.50, 0.57, 0.38  0.52(4%), 0.78(73), 0.41(8) The errors from Bisp are more degraded than PS –Need not go to 4-pt! In the presence of systematics, PS+Bisp would be very powerful to discriminate the cosmological signals (Huterer, MT+ 05)

20 WLT + Cluster Counts Clusters are easy to find from WL survey itself: mass peaks (Miyazaki etal.03; see Hamana san’s talk for the details) Synergy with other wavelength surveys (SZ, X-ray…) –Combining WL signal and other data is very useful to discriminate real clusters from contaminations Combing WL with cluster counts is useful for cosmology? –Yes, would improve parameter constraints, but how complementary? Cluster counts is a powerful probe of cosmology, established method (Kitayama & Suto 97; Meneghetti+05) MT & S. Bridle astro-ph/0705.0163 Angular number counts: w0=-1  w0=-0.9

21 Mass-limited cluster counts vs. lensing-selected counts Mass-selected sample (SZ) vs lensing-based sample Halo distributionConvergence map Hamana, MT, Yoshida 04 2 degrees

22 Redshift distribution of cluster samples

23 Cross-correlation between CC and WL If the two observables are drawn from the same survey region, the two probe the same cosmic mass density field in LSS Around each cluster, stronger shear signal is expected: up to ~10% in induced ellipticities, compared to a few % for typical cosmic shear A positive cross-correlation is expected: Clusters happen to be less/more populated in a given survey region than expected, the amplitudes of are most likely to be smaller/greater A patch of the observed sky Cluster Shearing effect of background galaxies

24 Cross-correlation btw CC and WL (contd.) Shown is the halo model prediction for the lensing power spectrum A correlation between the number of clusters and the ps amplitude at l~10^3 is expected. 10^14<M/M_s<10^15

25 Cross-covariance between CC + WL Cross-covariance between PS binned in l and z and the cluster counts binned in z The cross-correlation arises from the 3-pt function of the cluster distribution and the two lensing fields of background galaxies –The cross-covariance is from the non-Gaussianity of LSS The structure formation model gives specific predictions for the cross-covariance

26 SNR for CC+WL The cross- covariance leads to degradation and improvement in S/N up to ~  20%, compared to the case that the two are independent

27 Parameter forecasts for CC+WL Lensing-selected sample with detection threshold S/N~10 contains clusters with >10^15Msun Lensing-selected sample is more complementary to WLT, than a mass-selected one? Needs to be more carefully addressed lensing-selected sample mass-selected sample WL CC+WL CC+WL with Cov

28 HSCWLS performance (WLT+CC+CMB ) Combining WLT and CC does tighten the DE constraints, due to their different cosmological dependences Cross-correlation between WLT and CC is negligible; the two are considered independent approximately

29 Issues on systematics: self-calibration If several observables (O 1,O 2,…) are drawn from the same survey region: e.g., WLPS, WLBisp, CC,… –Each observable contains two contributions (C: cosmological signal and S: systematics) Covariances (or correlation) between the different obs. –If the systematics in different obs are uncorrelated –The cosmological covariances are fairly accurately predictable Taking into account the covariances in the analysis could allow to discriminate the cosmological signals from the systemacs – self-calibration –Working in progress

30 Summary The non-Gaussian errors in cosmic shear fields arise from non-linear clustering in structure formation –The CDM model provides the specific predictions, so the NG errors are in some sense accurately predictable Bad news: the NG errors are very important to be included for current and, definitely, future surveys –The NG degrades the S/N for the lensing power spectrum measurement up to a factor of 2 Good news: the NG impact on cosmo para errors are less significant if working in a multi-dimensional parameter space –~10% for 7-D parameter space WLT and cluster counts, both available from the same imaging survey, can be used to tighten the cosmological constraints


Download ppt "Non-Gaussian signatures in cosmic shear fields Masahiro Takada (Tohoku U., Japan) July 6 th IAP Based on collaboration with Bhuvnesh Jain (Penn) (MT."

Similar presentations


Ads by Google