Download presentation
Presentation is loading. Please wait.
Published bySusanna Webb Modified over 9 years ago
1
4/7/2008 DIS 2008 - Minerva1 The MINER A Experiment Heidi Schellman for the MINER A collaboration
2
4/7/2008DIS 2008 - Minerva2 The MINER A Experiment Red = HEP, Blue = NP, Black = Theorist D. Drakoulakos, P. Stamoulis, G. Tzanakos, M. Zois University of Athens, Athens, Greece C. Castromonte, H. da Motta, M. Vaz, J.L.Palomino Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil D. Casper, J. Dunmore, C. Regis, B. Ziemer University of California, Irvine, California E. Paschos University of Dortmund, Dortmund, Germany M. Andrews, D. Boehnlein, N. Grossman, D. A. Harris, J. Kilmer, J.G. Morfin, A. Pla-Dalmau, P. Rubinov, P. Shanahan Fermi National Accelerator Laboratory, Batavia, Illinois J. Felix, G. Moreno, M.Reyes, G Zavala Universidad de Guanajuato, Guanajuato, Mexico I.Albayrak, M..E. Christy, C.E.Keppel, V. Tvaskis Hampton University, Hampton, Virginia A, Butkevich, S.Kulagin Institute for Nuclear Research, Moscow, Russia I. Niculescu. G..Niculescu James Madison University, Harrisonburg, Virginia W.K. Brooks, A. Bruell, R. Ent, D. Gaskell, W. Melnitchouk, S. Wood Jefferson Lab, Newport News, Virginia E. Maher Massachusetts College of Liberal Arts, North Adams, Massachusetts R. Gran University of Minnesota-Duluth, Duluth Minnesota D. Buchholtz, B. Gobbi, H. Schellman Northwestern University, Evanston, IL S. Boyd, S. Dytman, M.-S. K, D. Naples, V. Paolone University of Pittsburgh, Pittsburgh, Pennsylvania L. Aliaga, J.L. Bazo, A. Gago, Pontificia Universidad Catolica del Peru, Lima, Peru A. Bodek, R. Bradford, H. Budd, J. Chvojka,,P. de Babaro, S. Manly, K. McFarland, J. Park, W. Sakumoto, J. Seger, J. Steinman University of Rochester, Rochester, New York R. Gilman, C. Glasshausser, X. Jiang, G. Kumbartzki, R. Ransome, E. Schulte Rutgers University, New Brunswick, New Jersey S. Kopp University og Texcas-Austin, Texas D. Cherdack, H. Gallagher, T. Kafka, W.A. Mann, W. Oliver Tufts University, Medford, Massachusetts R. Ochoa, O. Pereyra, J. Solano Universidad Nacional de Ingenieria. Lima, Peru M. Kordosky, J. Nelson William and Mary College, Williamsburg, Virginia
3
4/7/2008DIS 2008 - Minerva3 The NuMI Beam Configurations. For MINOS, the majority of the running will be in the “low-energy” (LE) configuration. Post-MINOS: NO A would use the ME beam, MINER A would prefer LE (≥ one year) and ME beam
4
4/7/2008DIS 2008 - Minerva4 LE-configuration: E peak = 3.0 GeV rate = 60 K events/ton/10 20 pot ME-configuration: E peak = 7.0 GeV, rate = 230 K events/ton/10 20 pot HE-configuration: E peak =12.0 GeV, rate = 525 K events/ton/10 20 pot Expected Event statistics for a generic experiment. With E-907 at Fermilab to measure particle spectra from the NuMI target, expect to know neutrino flux to ≈ ± 5%.
5
4/7/2008DIS 2008 - Minerva5 “MINERvA” in the NUMI beamline
6
4/7/2008DIS 2008 - Minerva6 Basic MINERvA Detector Active core is segmented solid scintillator Tracking (including low momentum recoil protons) Particle identification 3 ns (RMS) per hit timing (track direction, stopped K±) Core surrounded by electromagnetic and hadronic calorimeters Photon ( 0 ) & hadron energy measurement Nuclear targets located in front of main detector MINOS Near Detector as muon catcher
7
4/7/2008DIS 2008 - Minerva7 Complete MINER A Experimental Set-up LHe 0.25 t VetoWall Cryotarget Fully Active Target: 8.3 tons Nuclear Targets: 6.2 tons (40% scint.) DS HCAL: 30 tons DS ECAL: 15 tons Side HCAL: 116 tons Side ECAL Pb: 0.6 tons
8
4/7/2008DIS 2008 - Minerva8 Event Sample with 4x10 20 Protons on Target LE & 12x10 20 POT ME beam TargetFiducial Vol. Expected CC (tons)Yields (tons)Yields Scint.39.0M He0.20.6M C 0.150.4M Fe 0.72.0M Pb0.85 2.5M
9
4/7/2008DIS 2008 - Minerva9 MINERvA Physics Goals Axial form factor of the nucleon Accurately measured over a wide Q2 range. Resonance production in both NC & CC neutrino interactions Study of “duality” with neutrinos Coherent pion production Strange particle production Parton distribution functions (DIS) at high x Generalized parton distributions Nuclear dependence of all of these Expect some significant differences for -A vs e/ -A nuclear effects
10
4/7/2008DIS 2008 - Minerva10 MINERvA Detector Module Inner Detector (ID) Hexagonal X, U, V planes for 3D tracking, Active Scintillator Target Outer Detector (OD) “Towers” of iron & scintillator for hadron calorimetry Lead for EM calorimetry
11
4/7/2008DIS 2008 - Minerva11 MINER A Optics
12
4/7/2008DIS 2008 - Minerva12 MINERvA compared to NuTeV Moore’s law for electronics 800 channels 32,000 for less $ 5 cm
13
4/7/2008DIS 2008 - Minerva13 Simulated events and particles Quasielastic event n p 0 0 Resonance production p + - p 0 + +
14
4/7/2008DIS 2008 - Minerva14 Neutral Pions Photons cleanly identified and tracked π 0 energy res.: 6%/√E (GeV) For coherent pion production, the angular distribution is dominated by physics not resolution
15
4/7/2008DIS 2008 - Minerva15 Particle Identification p X 2 differences between right and best wrong hypothesis Particle ID by dE/dx in strips and endpoint activity Particle ID by dE/dx in strips and endpoint activity
16
4/7/2008DIS 2008 - Minerva16 MINER A Physics : Low Energy Neutrino Scattering We will be making precision measurements of low energy neutrino cross sections: Contributions to total cross section: TOT = QE + RES + DIS QE : Quasi-elastic RES : Resonance DIS : Deep Inelastic Scattering Inelastic, Low-multiplicity final states Inelastic, High- multiplicity final states Lipari, Lusignoli and Sartogo, PRL 74, 4384 (1995)
17
4/7/2008DIS 2008 - Minerva17 MINER A measurements Main CC Physics Topics (Statistics in active target only - CH) Quasi-elastic 0.8 M events Resonance Production 1.7 M total Transition: Resonance to DIS2.1 M events DIS, Structure Funcs. and high-x PDFs 4.3 M DIS events Coherent Pion Production 89 K CC / 44 K NC Strange and Charm Particle Production > 240 K fully reconstructed events Generalized Parton Distributions ~ 10 K events All absolute cross section results will be limited by the flux normalization (~5%)
18
4/7/2008DIS 2008 - Minerva18 Precision Quasi Elastic MINERvA Quasielastic
19
4/7/2008DIS 2008 - Minerva19 A-dependence in scattering A dependence observed in e/ DIS Could be different for neutrinos Presence of axial-vector current. Different nuclear effects for valence and sea leads to different shadowing for xF 3 compared to F 2. 0.7 0.8 0.9 1 1.1 1.2 0.0010.010.11 EMC NMC E139 E665 shadowing EMC effect Fermi motion x sea quark valence quark If we understand at 10-20 GeV Will that help at 100 GeV? Comparing with JLAB will help.
20
4/7/2008DIS 2008 - Minerva20 Low energy inclusive and exclusive cross sections for neutrino oscillations 0 NC important for oscillation experiments e OR ?
21
4/7/2008DIS 2008 - Minerva21 MINERvA schedule MINERvA received DOE critical decision (CD) 3a approval Spring 07 Authorization for advanced purchases Beginning purchases for PMT ’ s, WLS fiber, Clear fiber, PMT box components, steel and lead Approved for full construction authorization (CD 3b) Fall 07 Included in FY08 Presidential Budget for Department of Energy Construction is beginning Detector installation and commissioning in 2009
22
4/7/2008DIS 2008 - Minerva22 MINERvA Test Beam Detector 40 planes, XUXV orientation as in full MINERvA Removable lead and iron absorbers. In light-proof box Size will be smaller: ~1.2 x 1.2 m 2 Requesting Fermilab Test Beam Facility Upgrade to reach lower /K/p momenta of order 250 MeV Test Beam run in the M-Test beam to be scheduled for late summer this year
23
4/7/2008DIS 2008 - Minerva23 We’ll bring results to DIS 2010
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.