Presentation is loading. Please wait.

Presentation is loading. Please wait.

XAFS Studies in U7C Wiggler XAFS Studies in U7C Wiggler Beam-line of NSRL Shiqiang Wei, Xinyi Zhang Hongwei Yang, and Faqiang Xu National Synchrotron Radiation.

Similar presentations


Presentation on theme: "XAFS Studies in U7C Wiggler XAFS Studies in U7C Wiggler Beam-line of NSRL Shiqiang Wei, Xinyi Zhang Hongwei Yang, and Faqiang Xu National Synchrotron Radiation."— Presentation transcript:

1 XAFS Studies in U7C Wiggler XAFS Studies in U7C Wiggler Beam-line of NSRL Shiqiang Wei, Xinyi Zhang Hongwei Yang, and Faqiang Xu National Synchrotron Radiation Laboratory National Synchrotron Radiation Laboratory University of Science & Technology of China Hefei, 230029, P.R.China

2 NSRL in Hefei, China

3 The Storage Ring at NSRL

4 The beamline planned and Operated in NSRL U4 IR and Far IR Spectroscopy U7A LIGA U7B X-ray Diffraction and Scattering U14 Atomic and Molecular Spectroscopy U18 Soft X-ray MCD U19 Surface Physics U25 Photo-Acoustic and Photo-Thermal Spectroscopy U27 Metrology and Spectral Radiation Standard In construction In Operation U1 X-ray lithography U7B XAFS U10A Photo-Chemistry U10B Time-Resolved Spectroscopy U12A Soft X-ray Microscopy U20 Photoelectron Spectroscopy

5 3-pole superconducting wiggler of 6T

6 Beam from bending magnet and superconducting wiggler

7 Monochromator of Si (111) double crystals

8 U7C XAFS station of NSRL

9 Side view of XAFS beamline at NSRL Superconducting Wiggler Experiment Hutch 1. Handle valve 2. Water cooling mask 3. Pressure valve 4. Fast control valve 5. Separating diaphragm 6. Beam stop 7. Pressure valve8. Absorption Be window9. Diaphragm 10. Pressure valve 11. Entry slit 12. Flux monitor13. Double crystal monochromator 14. Exit slit 15.Fluorescent screen 16. Beam stop

10

11

12 Q s1 Q s2 SR Sample Computer IEEE-488 Keithley 6517 Electrometer Keithley 6517 Electrometer Schematic diagram of detector system for charge measurement

13 Equivalent Circuit of Keithley 6517 Electrometer

14 XAFS Photon energy 5–12 keV Resolution 10 -4 @12 keV Flux 1× 10 10 photons/sec K edge Z=22 ∼ 33 L edge Z=52 ∼ 73  Transmission  Fluorescence  In situ measurements U7C of XAFS station open for users in Dec. 1999

15 400060008000100001200014000 10 9 8 Flux Intensity of U7C Beamline at the Sample Position of Hefei National Synchrotron Radiation Laboratory Photon Flux ( ph/s ) Energy ( eV )

16

17 85009000950010000 0.0 0.5 1.0 1.5 2.0 X-ray absorption spectrum of K edge for Cu foil Cu foil (NSRL)  x ( Arb. Units ) Energy ( eV )

18 X-RAY ABSORPTION SPECTRUM OF K-EDGE FOR TiO 2 POWDER

19 X-RAY ABSORPTION SPECTRA OF K-EDGE FOR Ge POWDER

20

21 1 Annealed crystallization of Ni-B and Ni-P nano-amorphous alloys APPLICATIONS of U7C XAFS STATION

22 Significations TM-M type Ultrafine amorphous alloy (TM=Ni, Co, Fe; M=B, P) have the high ratio of surface atoms and amorphous structure. Applications in ferrofluid, catalysts and magnetic recording materials.

23 X-ray-absorption fine structure study on devitrification of ultrafine amorphous NiB alloy Phys.Rev.B63, 224201(2001). Shiqiang Wei, Hiroyuki Oyanagi, Xinyi Zhang, Wenhan Liu, Annealed crystallization of ultrafine amorphous NiB alloy studied by XAFS Journal of Synchrotron Radiation, 8, 566(2001). Shiqiang Wei, Zhongrui Li, Shilong Yin, Xinyi Zhang.

24 Preparation Chemical method: KBH4, 2 mol/L Ni(CH3COO)2  4H2O, 0.25 mol/L Ni(CH3COO)2  4H2O, 0.25 mol/L ice-water bath and vigorously agitated by a magnetic stirrer. ice-water bath and vigorously agitated by a magnetic stirrer.

25 1.1 Catalytic activities of nano-amorphous Ni-B and Ni-P for Benzene Hydrogenation

26 1. 2 DTA profiles of NiB and NiP

27 1.3 XRD results of NiB with different annealed temperatures

28 XRD spectra of NiP at different temperature

29 1.4 XAFS results k 3  (k)-k function of NiB and NiP

30

31 Fitting results of NiB and NiP

32 Sample Annealing Pair Rj (nm) R0 (nm) N  T (10 -2 nm)  S (10 -2 nm)  E0 (eV) Temp Ni-B 25 o C Ni-Ni 0.274 0.241  0.001 11.0  1.0 0.69 3.3 -0.2 Ni-B 0.218 0.215  0.001 2.7  0.2 0.46 0.34 -4.7 Ni-P 25 o C Ni-Ni 0.271 0.243  0.001 10.0  1.0 0.60 2.8 -2.9 Ni-P 0.223 0.215  0.001 1.6  0.2 0.40 0.80 5.3 Ni-B 300 o C Ni-Ni 0.255 0.243  0.001 9.9  1.0 0.60 1.1 -0.9 Ni-B 0.218 0.215  0.001 2.6  0.2 0.60 0.34 5.0 Ni-P 300 o C Ni-Ni 0.258 0.242  0.001 10.1  1.0 0.63 1.6 -1.3 Ni-P 0.222 0.215  0.001 0.8  0.2 0.49 0.65 8.7 Ni-B 500 o C Ni-Ni 0.249 0.245  0.001 10.8  1.0 0.70 0.39 1.6 Ni-B 0.217 0.215  0.001 0.3  0.2 0.56 0.23 -5.0 Ni-P 500 o C Ni-Ni 0.255 0.243  0.001 10.4  1.0 0.60 1.25 -2.8 Ni-P 0.225 0.219  0.001 0.6  0.2 0.40 0.56 7.6 Ni foil Ni-Ni 0.249 12.0 0.74 Average distance Rj=R0+σs R’s error=  0.001 nm ,  T ’s error=  0.05  10-2 nm ,  S ’s error=  0.1  10-2 nm 。

33 Conclusion The XAFS results demonstrate that a fcc-like nanocrystalline Ni phase with a medium-range order is formed at 573 K where the first exothermic process is observed. The metastable intermediate states consist of the two phases, i.e., nanocrystalline Ni and crystalline Ni 3 B alloy.

34 We have noted that the  S of Ni-Ni shell significantly decreases from 0.033 to 0.0029 nm, after NiB being annealed at the temperature of 773 K. The structural parameters of NiB sample is almost the same as that of Ni foil. Nevertheless, the  S (0.0125 nm) of NiP sample is rather larger.

35 2 Structural transitions for immiscible Fe-Cu system induced by mechanical alloying

36 Significations The method of mechanical alloying can largely increase the solid solubility of immiscible Fe 100-x Cu x alloy. Unique electronic and magnetic properties for Fe-Cu system. The mechanism enhanced solubility of Fe-Cu alloy is not clear.

37 Structural transitions of mechanically alloyed Fe 100-x Cu x system studied by X-ray absorption fine structure Physica B, 305, 135(2001) Shiqiang Wei, Wensheng Yan, Yuzhi Li, Wenhan Liu, Jiangwei Fan, and Xinyi Zhang Metastable structures of immiscible Fe X Cu 100-X system induced by mechanical alloying. J.Phys. CM, 9, 11077(1997). Shiqiang Wei, Hiroyuki Oyanagi, Cuie Wen, Yuanzheng Yang, and Wenhan Liu.

38 Preparations Alloy omposition Fe 100-x Cu x x= 0, 10, 20, 40, 60, 80, 100. WC balls to the mixed Fe-Cu powder 10 to 1. MA milling rate: about 210 r/min.

39 k3  (k)-k function of Fe 100-x Cu x

40 RDFs of Fe 100-x Cu x alloys

41 Fitting results of the Fe 100-x Cu x samples

42 The structure parameters of Fe 100-x Cu x by fitting the Fe K-edge EXAFS spectra SampleBond type R(Å)  (Å) N E0E0 Fe powderFe-Fe 2.48  0.020.070  0.0058.0  0.5 2.97 Fe 90 Cu 10 Fe-Fe 2.48  0.020.078  0.0057.6  0.5 -4.01 Fe-Cu 2.48  0.020.080  0.0050.7  0.3 -1.59 Fe 80 Cu 20 Fe-Fe 2.48  0.020.081  0.0057.2  0.5 -2.01 Fe-Cu 2.48  0.020.081  0.0051.2  0.3 4.31 Fe 60 Cu 40 Fe-Fe 2.57  0.020.099  0.0058.7  0.5 0.64 Fe-Cu 2.56  0.020.099  0.0053.5  0.3 -4.99 Fe 40 Cu 60 Fe-Fe 2.58  0.020.099  0.0056.9  0.5 4.99 Fe-Cu 2.58  0.020.099  0.0055.6  0.5 2.63 Fe 30 Cu 70 Fe-Fe 2.58  0.020.098  0.0055.7  0.5 4.96 Fe-Cu 2.58  0.020.098  0.0056.4  0.5 2.94 Fe 20 Cu 80 Fe-Fe 2.58  0.020.098  0.0055.0  0.5 4.95 Fe-Cu 2.58  0.020.098  0.0057.1  0.5 3.45

43 The structure parameters of Fe100-xCux by fitting the Cu K-edge EXAFS spectra SampleBond type R(Å)  (Å) N E0E0 Fe 90 Cu 10 Cu-Cu 2.48  0.020.078  0.0051.5  0.3 -3.1 Cu-Fe 2.48  0.020.073  0.0056.7  0.5 -5.0 Fe 80 Cu 20 Cu-Cu 2.50  0.020.082  0.0052.1  0.3 4.8 Cu-Fe 2.49  0.020.081  0.0056.2  0.5 4.0 Fe 60 Cu 40 Cu-Cu 2.55  0.020.089  0.0057.1  0.5 2.7 Cu-Fe 2.55  0.020.087  0.0054.6  0.5 0.9 Fe 40 Cu 60 Cu-Cu 2.56  0.020.089  0.0058.4  0.5 -3.9 Cu-Fe 2.54  0.020.089  0.0053.3  0.3 -4.3 Fe 30 Cu 70 Cu-Cu 2.55  0.020.089  0.0059.7  0.5 -1.8 Cu-Fe 2.54  0.020.089  0.0052.3  0.3 -3.8 Fe 20 Cu 80 Cu-Cu 2.55  0.020.089  0.0059.8  0.5 -2.1 Cu-Fe 2.54  0.020.088  0.0051.5  0.3 -4.6 Cu powderCu-Cu 2.55  0.020.089  0.005 12.0  0.5 0.4

44 Conclusions The local structures around Fe and Cu atoms depend on the initial composition. Fe 100-x Cu x solid solutions x  40, fcc-like structure x  20, bcc-like structure

45 The fitting results indicate that the MA Fe x Cu 100-x alloys with x  40 are inhomogeneous supersaturated solid solutions, and there are a fcc Fe-rich and a fcc Cu-rich regions in solid solutions. For lower Cu concentrations with x  20. The evolution of the FT intensities and structural parameters of Fe atoms is identical with those of Cu atoms. This result suggests that the Cu atoms be almost homogeneously incorporated into the bcc Fe-Cu phase.

46 Thanks for Attendance


Download ppt "XAFS Studies in U7C Wiggler XAFS Studies in U7C Wiggler Beam-line of NSRL Shiqiang Wei, Xinyi Zhang Hongwei Yang, and Faqiang Xu National Synchrotron Radiation."

Similar presentations


Ads by Google