Download presentation
Presentation is loading. Please wait.
Published bySarah Chase Modified over 9 years ago
1
Psyc 235: Introduction to Statistics Lecture Format New Content/Conceptual Info Questions & Work through problems
2
What you should have accomplished so far… ALEKS account set up completed first assessment Worked through first section of material Spent 5+ hours on ALEKS Watched the video “What is statistics?” Any questions/problems so far?
3
From Last week: Definition of Statistics… CCollecting … OOrganizing … DDisplaying … IInterpreting … AAnalyzing … Data
4
What is Data? Data is the generic term for numerical information that has been obtained on a set of objects/individuals etc. Variable: Some characteristic of the objects/individuals (e.g., height) Data: the values of a variable for a certain set of objects/individuals
5
Two branches of statistics: Descriptive Statistics Describes a given set of data you have. Inferential Statistics Given the data you have about these people, does this say anything about other people?
6
Today: Descriptive Statistics Graphical Presentations of Distributions Histograms Frequency Polygons Cumulative Distributions Box-and-whisker plots Descriptive Measures of Data Measures of Central Tendency Measures of Dispersion
7
Organizing Data Data from last week Frequency Table
8
Histograms Note: Use Histogram to note patterns in data. (Skew, etc.)
9
Frequency Polygon Time AwakeNumber of Students Frequency 6:30-7:0010.0333 7:00-7:3010.0333 7:30-8:0030.1 8:00-8:3020.0667 8:30-9:0040.1333 9:00-9:3050.1667 9:30-10:0070.2333 10:00-10:3040.1333 10:30-11:0030.1 Total301
10
Cumulative Frequency
11
Box and Whisker Plots Graphical representation of the 4 quartiles, (e.g. data is split into 4 equally sized groups) If there are an even number of observations, let the “top” be the top half, and let the “bottom” be the bottom half. If there are an odd number of observations, let the “top” be everything above the median and the “bottom” be everything below the median. The first quartile is the “median of the bottom”. The third quartile is the “median of the top”.
12
Box-and-Whisker Example Median: 9:20 1st Quartile: 8:30 3rd Quartile: 9:45 Again, Note the information you can obtain by looking at this graphical representation of the data
13
Graphical Presentations of Data Listed Data: All data available Frequency Table: Data frequency for each cell is available Histograms: Data frequency for each bin is available Polygons: Data frequency for each bin is available Box-and-whisker plots: Summary info and data range available Often: Just summarize key features of the distribution. Less And Less Information
14
Describing Distributions Summary Measures Measures of Central Tendency “Average”, “Location”, “Center” of the distribution. Measures of Dispersion “Spread”, “Variability” of the distribution. Summary Measures Measures of Central Tendency “Average”, “Location”, “Center” of the distribution. Measures of Dispersion “Spread”, “Variability” of the distribution.
15
Measures of Central Tendency Mean Median Mode May already be familiar with these concepts, but I want you to think of them in relation to describing data.
16
Mode Most frequent observation or observation class There can be several distinct modes “Best guess” in single shot guessing game
17
Mode (example data) Mode? 9:30
18
Median Any value M for which at least 50% of all observations are at or above M and at least 50% are at or below M. Resistant measure of central tendency (not heavily influenced by extreme values)
19
Calculating the Median Order all observations from smallest to largest. If the number of observations is odd, it is the “middle” object, namely the [(n+1)/2]th observation. For n = 61, it is the 31 st If the number of observations is even then, to get a unique value, take the average of the (n/2)th and the (n/2 +1)th observation. For = 60, it is the average of the 30 th and the 31 st observation.
20
Median (example data) Since there are an even number of data points Take the average of the middle two values.,
21
Mean Sum up all observations (say, n many) and divide the total by n. Extreme values strongly influence the mean Mean as the center of the value in a distribution (center of gravity)
22
Calculating the mean Suppose that we collect n many observations Let denote the individual observations. Mean Sum up all observations (say, n many) and divide the total by n. Mean
23
Mathematical Notation Mean
24
Mean (example data) ∑X = 273.34 X = 273.34 / 30 = 9.11 Transform back into time scale: ≈ 9:06
25
A few notes about summation, and implications for calculation of the mean n
26
Mean If all data has the same value, a, then the mean value is also a. because:
27
Multiplying all values by a constant
28
If we multiply each observation by 2, then we obtain a new distribution with a different shape A multiplying constant affects the mean (and the “spread”)
29
Adding a constant to all values
30
If we add the constant 5 to each observation, then we obtain a new distribution that is shifted to the right by 5 units A shift affects the mean (but not the “spread”)
31
Combining two variables
32
Adding two variables The mean of the sum of two variables is the sum of their means
33
Measures of Dispersion Population Standard Deviation Sample Standard Deviation
34
If we want to know how much the values vary around the mean…. We could calculate how much each value varies from the mean… Because of the way we calculate the mean, this formula gives zero no matter what data you have!
35
Population Standard Deviation Variance Standard Deviation S S
36
Sample Standard Deviation Variance Standard Deviation There are n-1 “degrees of freedom” (If you know the mean and n-1 observations then you can figure out the n’th observation)
37
Computational Formulas Note that there are computational formulas for the standard deviation. Look for them in ALEKS and write them down. Remember you can bring notes to your assessments
38
For Next Week… Keep working on ALEKS Finish the descriptive statistics section Watch the second video If you can, start probability section before Jason’s lecture next week. Remember: Office Hours and Lab are always available for you.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.