Download presentation
Presentation is loading. Please wait.
Published bySara Townsend Modified over 10 years ago
1
Progress on the software developed under E-STAT Bill Browne and Chris Charlton
2
Why the slides? To remind me which templates to demonstrate Lets start with simply demonstrating 1 template Template1lev with the tutorial dataset and a regression model in E-STAT Run in E-STAT Show generated C code Show java script and explain the server possibilities Show the template code (maybe discuss input functions)
3
Explanation for following screenshots We show how to set up the model and run using the E-STAT engine The generated C code can be taken away and run on its own or modified by an algorithm writer The Java script code is similar however offers the opportunity of hosting the software on a server but running the estimation (via Java script) on the local machine.
4
Setting up first model
5
Equations for model and model code
6
Output from the E-STAT engine
7
Output of generated C code
8
View of Java Script source
9
Java Script output
10
Template input code class Template1Lev(Template): invars = ''' y = DataVector('response: ') D = Text('specify distribution: ', ['Normal', 'Binomial', 'Poisson']) if D.name == 'Binomial': n = DataVector('denominator: ') link = Text('specify link function: ', ['logit', 'probit', 'cloglog']) if D.name == 'Poisson': link = Text(value = 'ln') offset = Text('Is there an offset: ', ['yes', 'no']) if offset.name == 'yes': n = DataVector('offset: ') if D.name == 'Normal': tau = ParamScalar() sigma = ParamScalar() x = DataMatrix('explanatory variables: ') beta = ParamVector() beta.ncols = len(x.name) ''' This code matches with the inputs in the web interface
11
Stringing Templates together Use rats dataset and aim to fit random intercepts model: Use template split and demonstrate the view and summary buttons Form the dataset called ratlong Choose as template2lev and ratlong dataset. Again use view to look at the dataset created. Setup the random intercepts model
12
Viewing a data set via the view button
13
Summarising the data (like MLwiN names window)
14
Converting repeated measures data to a single response (Templatesplit)
15
Viewing the new dataset
16
Setting up a random intercepts model (with template2lev)
17
Output from the model
18
Rats continued Fit the model storing results in ratout Construct the VPC (= (1/tau_u)/((1/tau_u)+(1/tau)) !!!) using TemplateEvalute storing in ratsout again Then view the chain using TemplateColumndiag Finally look at the residuals using Templatecaterpillar
19
Using TemplateEvaluate to construct the VPC
20
View the file ratout (including VPC)
21
Using TemplateColumnDiag to look at the VPC
22
Set up templateCaterpillar for Caterpillar plot
23
Caterpillar plot
24
Other Stuff Graphics – show with tutorial (or with output u_1 and tau_u) TemplateXYlabel TemplateHistogram And then show the python code! Finally large numbers of model templates – some still to do depends on Bruces algebra system.
25
TemplateXYlabel
26
All code for templateXYlabel – quite a short template! from EStat.Templating import * from mako.template import Template as MakoTemplate class TemplateXYLabel(Template): invars = ''' yaxis = DataMatrix('Y values: ') xaxis = DataVector('X values: ') yaxislabel = Text('Y label: ') xaxislabel = Text('X label: ') '' def preparedata(self, data): self.data = data return self.data def resultdata(self, m): return self.data def graphdata(self, data): import numpy from matplotlib.figure import Figure import matplotlib.lines as lines from matplotlib.backends.backend_agg import FigureCanvasAgg import subprocess import tempfile import os fig = Figure(figsize=(8,8)) ax = fig.add_subplot(100 + 10 + 1, xlabel = str(self.objects['xaxislabel'].name), ylabel = str(self.objects['yaxislabel'].name)) for n in self.objects['yaxis'].name: ax.plot(self.data[self.objects['xaxis'].name], self.data[n], 'x') canvas = FigureCanvasAgg(fig) directory = tempfile.mkdtemp() + os.sep canvas.print_figure(directory + 'xyplot.png', dpi=80) return directory + 'xyplot.png'
27
TemplateHistogram
28
Classification as index notation Tutorial dataset and Template2levindex Set up model then fire up Bruces demo (via notepad) Next show the C code Finally run the model Camille to demo interoperability later. Going off piste: Any other models ? Any suggestions for improvements, wish list etc.
29
Setting up model in E-Stat
30
Model Code in detail model { for (i in 1:length(normexam)) { normexam[i] ~ dnorm(mu[i], tau) mu[i] <- cons[i] * beta0 + standlrt[i] * beta1 + u[school[i]] * cons[i] } for (j in 1:length(u)) { u[j] ~ dnorm(0, tau_u) } # Priors beta0 ~ dflat() beta1 ~ dflat() tau ~ dgamma(0.001000, 0.001000) tau_u ~ dgamma(0.001000, 0.001000) }
31
Bruces Demo algebra system step for u
32
Generated C code – note the if statements for u
33
Model executed in E-Stat Note code takes longer but generalises easily to cross-classified models.
34
Interoperability with WinBUGS
35
Output from WinBUGS with multiple chains
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.