Download presentation
Presentation is loading. Please wait.
Published byBaldwin Lang Modified over 9 years ago
1
Global Optimization Techniques in Computational Electromagnetics Zbyněk Raida Dept. of Radio Electronics Brno University of Technology Brno, Czechia
2
Outline What does the optimization mean Classification of optimization tasks - single-objective versus multi-objective - local versus global Genetic optimization vs. particle swarm one Local tuning of global solutions An example Global optimization techniques …ITSS 2007, Pforzheim
3
Optimization definition Searching for such values of state variables to meet desired parameters as close as possible ITSS 2007, PforzheimGlobal optimization techniques …
4
Optimization objective function (1) Deviation of the actual parameters of the system from the desired ones ITSS 2007, PforzheimGlobal optimization techniques …
5
Optimization objective function (2) ITSS 2007, PforzheimGlobal optimization techniques …
6
More objectives polarization purity (1) ČÁP, A., RAIDA, Z., HERAS PALMERO, E., LAMADRID RUIZ, R. Multi-band planar antennas: a comparative study. Radioengineering, 2005, vol. 14, no. 4, p. 11–20. ITSS 2007, PforzheimGlobal optimization techniques …
7
More objectives polarization purity (2) RAIDA, Z., HERAS PALMERO, E., LAMADRID RUIZ, R. Four-band patch antenna with U-shaped notches. In Proc. of the16th international Conference on Microwaves, Radar and Wireless Communications MIKON 2006. Krakow (Poland), 2006, pp. 111–114. ITSS 2007, PforzheimGlobal optimization techniques …
8
More objectives directivity patterns (1) ITSS 2007, PforzheimGlobal optimization techniques …
9
More objectives directivity patterns (2)
10
More objectives multi-objective formulation ITSS 2007, PforzheimGlobal optimization techniques …
11
Multi-objective optimization two approaches ITSS 2007, PforzheimGlobal optimization techniques …
12
Searching for a minimum global versus local methods ITSS 2007, PforzheimGlobal optimization techniques …
13
Global methods genetic algorithms (1) ITSS 2007, PforzheimGlobal optimization techniques …
14
Global methods genetic algorithms (2) initial population quality evaluation selection ITSS 2007, Pforzheim
15
Global methods genetic algorithms (3) crossover mutation ITSS 2007, PforzheimGlobal optimization techniques …
16
function x = main( G, I, pc, pm) % x(1)= A, x(2)= B, x(3)= h, x(4)= eps load dip_616; % loading neural model Rd = 200.0; % desired input resistance Xd = 0.0; % desired input reactance bit = [ 8 8 1 2]; % bits per A, B, h, eps geb = norm( bit, 1) + 1; % bits in chromosome gen = round( rand( I, geb-1)); % 1st generation for g=1:G X = decode( I, bit, gen); % chromosome to A,B,h,eps Z = Tmax * sim( net, X'); % analysis gen(:,geb) = ((Rd-Z(1,:)).^2 + (Xd-Z(2,:)).^2; e(g) = min( gen( :,geb)); % minimum error [val,ind] = min( gen( :,geb)); x = X( ind, :); % best parameters gen = decim( gen, pc, pm, I, geb); end plot( e);
17
Global methods genetic algorithms (5)
18
Global methods genetic algorithms (6) ITSS 2007, PforzheimGlobal optimization techniques …
19
Global methods particle swarm optimization (1) ROBINSON, J., RAHMAT-SAMII, Y. Particle swarm optimization in electromagnetics. IEEE Transactions on Antennas and Propagation. 2004, vol. 52, no. 2, p. 397–407. ITSS 2007, PforzheimGlobal optimization techniques …
20
Global methods PSO (2) ITSS 2007, Pforzheim
21
Global methods particle swarm optimization (3) absorbingreflectinginvisible ITSS 2007, PforzheimGlobal optimization techniques …
22
function out = main( G, I) % x(1)= A, x(2)= B, x(3)= h, x(4)= eps load dip_616; % loading antenna model Rd = 200; % required input resistance Xd = 0; % required input reactance dt = 0.1; % time step c1 = 1.49; % personal scaling factor c2 = 1.49; % global scaling factor x = zeros( I, 5); % agents’ position p = zeros( I, 5); % personal best for n=1:I x(n,1) = 1.000 + 8.000*rand(); p(n,1) = x(n,1); x(n,2) = 0.001 + 0.049*rand(); p(n,2) = x(n,2); x(n,3) = 1.0 + 0.5 * rand(); p(n,3) = x(n,3); x(n,4) = 1.0 + 1.2 * rand(); p(n,4) = x(n,4); p(n,5) = 1e+6; end v = rand( I, 4); % agent velocity g = zeros( 1, 4); % global best e = zeros( G+1, 1); e(1) = 1e+6;
23
for m=1:G % +++ MAIN ITERATION LOOP +++ w = 0.5*(G-m)/G + 0.4; % inertial weight Z = Tmax * sim( net, x(:,1:4)'); % impedance of agents x(:,5) = ((Rd-Z(1,:)).^2 + (Xd-Z(2,:)).^2 [e(m+1),ind] = min( x( :,5)); % the lowest error if e(m+1)<e(m) g = x( ind, 1:4); % the global best end for n=1:I if x(n,5)<p(n,5) % the personal best p(n,:) = x(n,:); end v(n,:) = w*v(n,:) + c1*rand()*( p(n,1:4)-x(n,1:4)); v(n,:) = v(n,:) + c2*rand()*( g(1,1:4)-x(n,1:4)); x(n,1:4) = x(n,1:4) + dt*v(n,:); if x(n,1) > 9.00, x(n,1)=9.00; end % absorbing walls if x(n,2) > 0.05, x(n,2)=0.05; end if x(n,3) > 1.5, x(n,3)=1.5; end if x(n,4) > 2.2, x(n,4)=2.2; end end end
24
Global methods particle swarm optimization (5)
25
Global methods PSO (6) ITSS 2007, PforzheimGlobal optimization techniques …
26
Searching for a minimum global first, local later ITSS 2007, PforzheimGlobal optimization techniques …
27
Searching for a minimum global first, local later ITSS 2007, PforzheimGlobal optimization techniques …
28
Local minimization general algorithm (1) 1.Testing convergence. If the actual estimate of the optimum x k is accurate enough, then the algorithm is terminated. Otherwise, go to 2. 2.Computing search direction. Estimate the best direction p k moving the actual estimate of the optimum x k towards the optimum. ITSS 2007, PforzheimGlobal optimization techniques …
29
Local minimization general algorithm (2) 3.Computing step length. Estimate scalar k ensuring the significant decrease of the value of the objective function: F(x k + k p k ) < F(x k ) 4.Updating the estimate of the minimum. Set x k+1 x k + k p k, k k + 1. Go back to 1. ITSS 2007, PforzheimGlobal optimization techniques …
30
Testing algorithms Rosenbrock function function F = rosenbrock( x) F = 100*( x(2,1) - x(1,1)^2)^2 +... ( 1 - x(1,1))^2; ITSS 2007, PforzheimGlobal optimization techniques …
31
Steepest descent analytical approach function sda( alpha) M = 10000; x = [ -1; +1]; for m=1:M g(1,1) = -400*x(1,1)*( x(2,1)-x(1,1)^2)-2*(1-x(1,1)); g(2,1) = 200*( x(2,1) - x(1,1)^2); x = x - alpha*g; out(m,:) = x'; end ITSS 2007, PforzheimGlobal optimization techniques …
32
Steepest descent numerical approach function sdn( h) M = 10000; alpha = 1e-3; x = [ -1; +1]; for m=1:M X1(1,1) = rosenbrock( [x(1,1) + h/2; x(2,1)]); X1(2,1) = rosenbrock( [x(1,1) - h/2; x(2,1)]); X2(1,1) = rosenbrock( [x(1,1); x(2,1) + h/2]); X2(2,1) = rosenbrock( [x(1,1); x(2,1) - h/2]); g(1,1) = (X1(1,1) - X1(2,1)) / h; g(2,1) = (X2(1,1) - X2(2,1)) / h; x = x - alpha*g; out(m,:) = x'; end ITSS 2007, PforzheimGlobal optimization techniques …
33
Newton method direction, step ITSS 2007, PforzheimGlobal optimization techniques …
34
Newton method code function newton( x1, x2) M = 10; x = [ x1; x2]; for m=1:M g(1,1) = -400*x(1,1)*(x(2,1)-x(1,1)^2)-2*(1-x(1,1)); g(2,1) = 200*( x(2,1) - x(1,1)^2); H(1,1) = 1200*x(1,1)^2 - 400*x(2,1) + 2; H(1,2) = -400*x(1,1); H(2,1) = -400*x(1,1); H(2,2) = 200; x = x - inv( H)*g; out(m,:) = x' end ITSS 2007, PforzheimGlobal optimization techniques …
35
Steepest descent vs. Newton comparison Steepest descentNewton method Properly chosen step length k Step length k = 1 all the time Convergence for Rosenbrock: 7000 steps Convergence for Rosenbrock: 3 steps ITSS 2007, PforzheimGlobal optimization techniques …
36
Example GPS wire antenna Operation in frequency bands: –L1: central frequency f L1 = 1 575.4 MHz –L2: central frequency f L2 = 1 227.6 MHz Omni-directional constant gain for the elevation from 5° to 90° Right-hand circular polarization ITSS 2007, PforzheimGlobal optimization techniques …
37
GPS wire antenna GA v. PSO (1) LUKEŠ, Z., RAIDA, Z. Multi-objective optimiza- tion of wire antennas: genetic algorithms versus particle swarm optimization. Radioengineering, 2005, vol. 14, no. 4, p. 91–97. ITSS 2007, PforzheimGlobal optimization techniques …
38
GPS wire antenna GA v. PSO (2) LUKEŠ, Z., RAIDA, Z. Multi-objective optimiza- tion of wire antennas: genetic algorithms versus particle swarm optimization. Radioengineering, 2005, vol. 14, no. 4, p. 91–97. ITSS 2007, PforzheimGlobal optimization techniques …
39
GPS wire antenna GA v. PSO (3) LUKEŠ, Z., RAIDA, Z. Multi-objective optimiza- tion of wire antennas: genetic algorithms versus particle swarm optimization. Radioengineering, 2005, vol. 14, no. 4, p. 91–97. ITSS 2007, PforzheimGlobal optimization techniques …
40
GPS wire antenna GA v. PSO (4) LUKEŠ, Z., RAIDA, Z. Multi-objective optimiza- tion of wire antennas: genetic algorithms versus particle swarm optimization. Radioengineering, 2005, vol. 14, no. 4, p. 91–97. ITSS 2007, PforzheimGlobal optimization techniques …
41
GPS wire antenna GA v. PSO (5)
42
Conclusions Multi-objective optimization: a complex view on the structure Global optimization: perspective designs of a structure Local optimization: tuning of a relatively good design ITSS 2007, PforzheimGlobal optimization techniques …
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.