Download presentation
1
Atmospheric chemistry
Lecture 3: Tropospheric Oxidation Chemistry Dr. David Glowacki University of Bristol,UK
2
Yesterday… Today… We discussed photochemistry and kinetics
The earth’s atmosphere is a huge low temperature chemical reactor with variable temperature, pressure, and actinic flux All of these variables affect the rates of individual chemical reactions Today… Atmospheric chemistry is largely driven by free radical chain reactions We will discuss some of the important individual chemical reactions that are important in the troposphere
3
Why is atmospheric chemistry important?
Human activity is changing the composition of the atmosphere Regulatory policy requires an understanding of pollutant impact Atmospheric pollutants impact living organisms Health Vegetation (e.g., farming) & animals Climate change Atmospheric pollutants & their subsequent chemistry are responsible for: Acid rain Photochemical smog (e.g., arctic haze) Vegetation & animals Ozone hole
4
Atmospheric chemistry and Climate Change
Atmospheric chemistry plays an important role in radiative forcing processes Source: IPCC 4th assessment
5
Tropospheric Oxidation Starts with OH
O3 + h O1D + O2 O1D + M O1D + M O1D + H2O 2OH Degradation of atmospheric pollutants starts with the OH radical OH is often called ‘the detergent of the atmosphere’ OH is very reactive because it has an unpaired electron: O-H Measuring OH is hard! There’s not much of it, and it doesn’t live for long Tropospheric oxidation results in ground level O3, which is a greenhouse gas harmful to health FAGE OH detection instrument in Halley Base, Antarctica See:
6
O3 Photolysis makes OH O3 + hn g O2 + O(1D)
7
OH sinks OH Sinks: oxidation of reduced species
CO + OH g CO2 + H CH4 + OH g CH3 + H2O HCFC + OH g H2O + … Major OH sinks GLOBAL MEAN [OH] ~ 1.0x106 molecules cm-3
8
Initiation High NOx O3 sunlight NO2 NO OH HO2 VOC RO2 RO NO NO2
9
Initiation High NOx NO2 NO OH HO2 VOC RO2 RO NO NO2
10
Initiation High NOx NO2 NO OH HO2 VOC RO2 RO O2 NO NO2
11
Propagation High NOx NO2 NO OH HO2 VOC RO2 RO NO NO2
12
O3 High NOx VOC Ozone Formation NO2 NO OH HO2 RO2 RO NO NO2 O2
sunlight
13
O3 High NOx VOC Propagation NO2 NO OH HO2 oxidation product RO2 RO O2
14
O3 High NOx VOC Propagation NO2 NO OH HO2 oxidation product RO2 RO NO
15
O3 O3 High NOx VOC Ozone Formation sunlight O2 NO2 NO OH HO2
oxidation product VOC RO2 RO NO NO2 O3
16
High NOx O3 NO2 NO OH HO2 oxidation product VOC RO2 RO NO NO2 O3
17
O3 High NOx VOC Run Cycle NO2 NO OH HO2 oxidation product RO2 RO NO
18
High NOx O3 sunlight NO2 NO OH HO2 oxidation product VOC RO2 RO NO NO2
19
High NOx NO2 NO OH HO2 oxidation product VOC RO2 RO NO NO2
20
High NOx NO2 NO OH HO2 oxidation product VOC RO2 RO O2 NO NO2
21
High NOx NO2 NO OH HO2 oxidation product VOC RO2 RO NO NO2
22
O3 High NOx VOC NO2 NO OH HO2 oxidation product RO2 RO NO NO2 O2
sunlight
23
High NOx NO2 NO OH HO2 oxidation product VOC RO2 RO O2 NO NO2 O3
24
High NOx NO2 NO OH HO2 oxidation product VOC RO2 RO NO NO2 O3
25
O3 O3 High NOx VOC sunlight O2 NO2 NO OH HO2 oxidation product RO2 RO
26
High NOx O3 NO2 NO OH HO2 oxidation product VOC RO2 RO O2 NO NO2 O3
27
High NOx O3 NO2 NO OH HO2 oxidation product VOC RO2 RO NO NO2 O3
28
O3 O3 O3 High NOx VOC NO2 NO OH HO2 oxidation product RO2 RO NO NO2 O2
sunlight O3
29
High NOx O3 NO2 NO OH HO2 oxidation product VOC RO2 RO O2 NO NO2 O3 O3
30
High NOx O3 NO2 NO OH HO2 oxidation product VOC RO2 RO NO NO2 O3 O3
31
O3 O3 O3 O3 High NOx VOC sunlight O2 NO2 NO OH HO2 oxidation product
32
O3 O3 O3 O3 High NOx VOC NO2 NO OH HO2 oxidation product RO2 RO O2 NO
33
High NOx O3 O3 NO2 NO OH HO2 oxidation product VOC RO2 RO NO NO2 O3 O3
34
O3 O3 O3 O3 O3 High NOx VOC NO2 NO OH HO2 oxidation product RO2 RO NO
sunlight O3 O3
35
O3 O3 O3 O3 O3 O3 High NOx VOC NO2 NO OH HO2 oxidation product RO2 RO
36
O3 O3 O3 O3 O3 O3 High NOx VOC NO2 NO OH HO2 oxidation product RO2 RO
37
O3 O3 O3 O3 O3 O3 O3 High NOx VOC sunlight O2 NO2 NO OH HO2
oxidation product VOC RO2 RO NO NO2 O3 O3 O3 O3
38
O3 O3 O3 O3 O3 O3 High NOx VOC NO2 NO OH HO2 oxidation product RO2 RO
39
Ozone Production O3 O3 O3 O3 O3 O3 High NOx VOC NO2 NO OH HO2
oxidation product VOC RO2 RO NO NO2 O3 O3 O3
40
Chemistry of ozone formation
sunlight O2 sunlight NO2 NO OH HO2 oxidation product VOC RO2 RO O2 O2 NO NO2 O2 O3 sunlight
41
Initiation Low NOx O3 O3 O3 sunlight OH
42
Initiation Low NOx O3 O3 OH VOC RO2
43
Termination Low NOx O3 O3 OH VOC RO2 HO2 ROOH
44
General VOC oxidation scheme
O3 + h O1D + O2 O1D + H2O 2OH OH + RH (+O2) RO2 + H2O RO2 + NO NO2 + RO RO + O2 HO2 +R’CHO HO2 + NO OH + NO2 NO2 + h NO + O; O + O2 O3 OVERALL NOx + VOC + sunlight ozone The same reactions can also lead to formation of secondary organic aerosol (SOA)
45
PO3 [NO] & independent of [RH]
OZONE CONCENTRATIONS vs. NOx AND VOC EMISSIONS Air pollution model calculation for a typical urban airshed NOx limited PO3 [NO] & independent of [RH] VOC limited PO3 [NO2]-1; PO3 [RH]
46
Polluters: Mobile Transportation: Generates NOx and VOC.
Reductions focus on catalytic converters and fuel additives as well as congestion abatement strategies Stationary industrial sources of VOC and NOx: Reductions involve scrubbing of pollutants from chimney stacks. Biogenic Emissions: Generate VOCs, no feasible reduction strategy, Can propose urban landscapes that reduce emissions
47
NOx sources
48
Spatial distribution of NOx emissions
49
NOx sinks & transport NOx lifetime ~1 day NOx sinks – primarily HNO3
HNO3 is water soluble PAN allows locally produced NOx to be transported on global scales
50
Other oxidizing species
NO3 NO2 + O3 NO3 + O2 NO3 is rapidly lost in the day by photolysis and reaction with NO ( NO2), so that its daytime concentration is low. It is an important night time oxidant. It adds to alkenes to form nitroalkyl radicals which form peroxy radicals in the usual way. O3 Ozone reacts with alkenes to form a carbonyl + an energised Criegee biradical. The latter can be stabilised or decompose. One important reaction product is OH: O3 reactions with alkenes can act as a source of OH, even at night.
51
VOC removal by reaction with OH
VOC Lifetime with respect to OH: Atmospheric distribution depends on lifetime. The Northern Hemisphere (NH) is a major source of anthropogenic pollutants. CH4 is distributed globally with a slight NH/SH difference. Isoprene is found only close to its sources. The oxidising capacity of the atmosphere refers to its capacity to remove VOCs and depends on [OH] (and the concentrations of other oxidants like O3 and NO3 OH + CH × 10-3 OH + CO × 10-1 OH + isoprene 1.1 × 102 OH + ethane 2.4 × 10-1 k(298K) in units of 10-12 cm3 molecule-1 s-1
52
HCHO + OH (+O2) HO2 + CO + H2O
CH4 Oxidation Scheme CH OH (+O2) CH3O H2O CH3O NO CH3O NO2 CH3O O2 HO HCHO HO NO OH NO2 HCHO OH (+O2) HO CO H2O HCHO hn H CO HCHO hn (+2O2) 2HO CO Note: 2 × (NO NO2) conversions HCHO formation provides a route to HO2 radical formation.
53
Global budget for methane (Tg CH4 yr-1)
Sources: Natural 160 Anthropogenic 375 Total 535 Natural Sources: wetlands, termites, oceans… Anthropogenic Sources: natural gas, coal mines, enteric fermentation, rice paddies Sinks: Trop. oxidation 445 by OH Transfer to 40 stratosphere Uptake by soils 30 Total 515 Notes: The rate of oxidation is k5[CH4][OH], where the concentrations are averaged over the trop. 2. Concentrations of CH4 have increased from 800 to 1700 ppb since pre-industrial times 3. Methane is a greenhouse gas.
54
HISTORICAL TRENDS IN METHANE
Historical methane trend Recent methane trend Recent measurements at Mace Head in W Ireland. 1mg m-3 = 0.65 ppb NB – seasonal variation – higher in winter
55
GLOBAL DISTRIBUTION OF METHANE NOAA/CMDL surface air measurements
Seasonal dependence – higher in winter than summer (maximum in NH correlates with minimum in SH). NH concentrations > SH – main sources are in SH; slow transport across the intertropical conversion zone
56
General description of a chemical mechanism
57
Can we model oxidation results of other VOCs? …The MCM
Constructed by University of Leeds, in collaboration with Imperial College and UK Met Office Explicit mechanism, based on a protocol which describes the chemistry. Includes reactions of OH, NO3 and O3 and photolysis. For development protocol see: M.E.Jenkin et al. Atmos. Env., 1997, 31, 81. Describes the oxidation of 123 VOCs, based on the UK emissions inventory. It can be accessed via the web: The MCM is used by the UK Department of the Energy and Climate Change (DECC) to help develop its air quality strategy.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.