Download presentation
Presentation is loading. Please wait.
Published byLindsey Griffith Modified over 9 years ago
1
SNU IDB Lab. Ch8. Arrays and Matrices © copyright 2006 SNU IDB Lab.
2
SNU IDB Lab. Data Structures 2 Bird’s-Eye View In practice, data are often in tabular form Arrays are the most natural way to represent it Want to reduce both the space and time requirements by using a customized representation This chapter Representation of a multidimensional array Row major and column major representation Develop the class Matrix Represent two-dimensional array Indexed beginning at 1 rather than 0 Support operations such as add, multiply, and transpose Introduce matrices with special structures Diagonal, triangular, and symmetric matrices Sparse matrix
3
SNU IDB Lab. Data Structures 3 Table of Contents Arrays Matrices Special Matrices Sparse Matrices
4
SNU IDB Lab. Data Structures 4 The Abstract Data Type: Array AbstractDataType Array { instances set of (index, value) pairs, no two pairs have the same index operations get(index) : return the value of the pair with this index set(index, value) : add this pair to set of pairs, overwrite existing one (if any) with the same index }
5
SNU IDB Lab. Data Structures 5 Indexing a Java Array Arrays are a standard data structure in Java The index (subscript) of an array in Java [ i 1 ] [ i 2 ] [ i 3 ]… [ i k ] Creating a 3-dimensional array score int [][][] score = new int [ u 1 ][ u 2 ] [ u 3 ] Java initializes every element of an array to the default value for the data type of the array’s components Primitive data types vs. User-defined data types
6
SNU IDB Lab. Data Structures 6 1-D Array Representation Similar in C, C++, Java 1-dimensional array x = [a, b, c, d] X[0], X[1], X[2], X[3] Map into contiguous memory locations location(x[i]) = start + i Space overhead of array declaration 4 bytes for start + 4 bytes for x.length = 8 bytes Excluding space needed for the elements of x Memory abcd start
7
SNU IDB Lab. Data Structures 7 2-D Arrays The elements of a 2-dimensional array “a” declared as int [][] a = new int[3][4]; May be shown as table a[0][0]a[0][1] a[0][2] a[0][3] a[1][0]a[1][1] a[1][2] a[1][3] a[2][0]a[2][1] a[2][2] a[2][3] a[0][0] a[0][1] a[0][2] a[0][3] row 0 a[1][0] a[1][1] a[1][2] a[1][3] row 1 a[2][0] a[2][1] a[2][2] a[2][3] row 2 column 0column 1column 2column 3
8
SNU IDB Lab. Data Structures 8 “Array of arrays” Representation (1) Same in Java, C, and C++ 2D array is represented as a 1D array The 1D array’s each element is, itself, a 1D array int [][] x = new int[3][5] A 1D array “x” (length 3) Each element of x is a 1D array (length 5) x[0] x[1] x[2] [0][1] [2][3][4]
9
SNU IDB Lab. Data Structures 9 “Array of arrays” Representation (2) 2-D array x[][] a, b, c, d e, f, g, h i, j, k, l View 2-D array as 1-D arrays of rows x = [row0, row1, row2] row 0 = [a, b, c, d] row 1 = [e, f, g, h] row 2 = [i, j, k, l] So, require contiguous memory of size 3, 4, 4, and 4 respectively abcd efgh ijkl x[]
10
SNU IDB Lab. Data Structures 10 “Array of arrays” representation (3) Space overhead for array declaration = overhead for 4 1-D arrays = (num of rows + 1) x (start pointer + length variable) = 4 * 8 bytes = 32 bytes abcd efgh ijkl x[]
11
SNU IDB Lab. Data Structures 11 Covert 2D Array into 1D Array through Row-Major Mapping (1) Example 3 x 4 array a, b, c, d e, f, g, h i, j, k, l Convert into 1-D array y by collecting elements by rows Within a row elements are collected from left to right Rows are collected from top to bottom We get y[] = {a, b, c, d, e, f, g, h, i, j, k, l} row 0 row 1row 2…row i
12
SNU IDB Lab. Data Structures 12 Locating Element x[i][j] Assume x has r rows and c columns Each row has c elements There are i rows to the left of row i starting with x[i][0] So i * c elements to the left of x[i][0] So x[i][j] is mapped to position of i * c + j of the 1D array Ex: In the previous slide, c = 4: then x[2][3] 2*4 + 3 11 th element of 1D array row 0 row 1row 2…row i Covert 2D Array into 1D Array through Row-Major Mapping (2)
13
SNU IDB Lab. Data Structures 13 Space Overhead for 2D array Assume x has r rows and c columns 4 bytes for start + 4 bytes for length + 4 bytes for c = 12 bytes number of rows r = length / c Total space for 1D array: 12 + length Disadvantage: should have contiguous memory of size length row 0 row 1row 2…row i Start Length: length of 1D array C: number of columns Covert 2D Array into 1D Array through Row-Major Mapping (3)
14
SNU IDB Lab. Data Structures 14 a, b, c, d e, f, g, h i, j, k, l Convert into 1D array y by collecting elements by columns Within a column elements are collected from top to bottom Columns are collected from left to right We get y = {a, e, i, b, f, j, c, g, k, d, h, l} Covert 2D Array into 1D Array through Column-Major Mapping
15
SNU IDB Lab. Data Structures 15 Irregular 2D Arrays Arrays with two or more rows that have a different number of elements Size[i] for i (i is the row number) abcd efg ijkl x[] h k X[0] = new int [6] X[1] = new int [3] X[2] = new int [5]
16
SNU IDB Lab. Data Structures 16 Creating an Irregular 2D Array public static void main(String[] args) { int numofRows = 5; int [] size = (6,3,4,2,7) // declare a 2D array variable and allocate the desired number of rows int [][] irregularArray = new int [numOfRows][]; // now allocate space for the elements in each row for (int i = 0; i < numOfRows; i++) irregularArray[i] = new int [size[i]]; // use the array like any regular array irregularArray[2][3] = 5; irregularArray[4][6] = irregularArray[2][3] + 2; irregularArray[1][1] += 3; ….…. }
17
SNU IDB Lab. Data Structures 17 Table of Contents Arrays Matrices Special Matrices Sparse Matrices
18
SNU IDB Lab. Data Structures 18 Matrix Table of values has as rows and columns like 2-D array but numbering begins at 1 rather than 0 a b c d row 1 e f g h row 2 i j k l row 3 Use notation x(i, j) rather than x[i][j] Sometimes, we may use Java’s 2-D array or Vector to represent a matrix
19
SNU IDB Lab. Data Structures 19 Java 2D Array or Vector for a Matrix Java 2D Array A[0,*] and A[*,0] of 2D array cannot be used No support matrix operations such as add, transpose, multiply…. x and y are 2D arrays, we cannot do x + y, x – y, x * y, etc. directly in java Java Vector for 3X3 matrix Vector matrix_a = new Vector (3); Vector row_a = new Vector(3); row_a.addElement(“a”); row_a.addElement(“b”); row_a.addElement(“c ”); Vector row_b = new Vector(3); row_a.addElement(“d”); row_a.addElement(“e”); row_a.addElement(“f”); Vector row_c = new Vector(3); row_a.addElement(“g”); row_a.addElement(“h”); row_a.addElement(“i”); matrix_a.addElement(row_a); matrix_a.addElement(row_b); matrix_a.addElement(row_c) No matrix operations So, need to develop a class Matrix for object-oriented support of all matrix operations
20
SNU IDB Lab. Data Structures 20 The Class Matrix Uses 1-D array “element” to store a matrix in row-major order The CloneableObject interface has clone() and copy() public class Matrix implements CloneableObject { int rows, cols; // matrix dimensions Object [] element; // element array public Matrix(int theRows, int theColumns) { rows = theRows; cols = theColumns; element = new Object [ rows * cols]; }
21
SNU IDB Lab. Data Structures 21 clone() & copy() of Matrix public Object clone() { // return a clone of the matrix Matrix x = new Matrix(rows, cols); for (int i=0; i < rows * cols; i++) x.element[i] = ((CloneableObject) element[i]).clone(); return x; } public void copy (Matrix m) { // copy the references in m into this if (this != m) { rows = m.rows; cols = m.cols; element = new Object[rows * cols]; for (int i=0; i < rows * cols; i++) element[i] = m.element[i]; // copy each reference }
22
SNU IDB Lab. Data Structures 22 clone() & copy() example Matrix x = new Matrix(2, 2); for (int i=0; i < rows * cols; i++) x.element[i] = new Integer(i); // x = [0][1] // [2][3] Matrix y = x.clone(); // y = [0][1] // [2][3] ================================================== Matrix x = new Matrix(2, 2); Matrix y = new Matrix(2, 2); for (int i=0; i < rows * cols; i++) x.element[i] = new Integer(i*2); // x = [0][2] // [4][6] y.copy(x); // change y's member variables to make y same as x // y = [0][2] // [4][6] }
23
SNU IDB Lab. Data Structures 23 get() & set() of Matrix /**@return the element this[i, j] * @throws IndexOutOfBoundsException when i or j invalid */ public Object get (int i, int j) { checkIndex(i, j); // validate index return element[(i – 1) * cols + j -1]; } /**set this(i, j) = newValue * @throws IndexOutOfBoundsException when i or j invalid */ public void set (int i, int j, Object newValue) { checkIndex(i, j); element[(i – 1) * cols + j – 1] = newValue; }
24
SNU IDB Lab. Data Structures 24 add() of Matrix /**@return the this + m * @throws IllegalArgumentException when matrices are incomputible */ public Matrix add (Matrix m) { if (rows != m.rows || cols != m.cols) throw new IllegalArgumentException(“Imcompatible”); // create result matrix w Matrix w = new Matrix(rows, cols); int numberOfTerms = rows * cols; for ( int i=0; i < numberOfTerms; i++) w.element[i] = ((Computable) element[i]).add(m.element[i])); return w; }
25
SNU IDB Lab. Data Structures 25 Complexity of Matrix operations Constructor: 0 (rows * cols) Clone(), Copy(), Add(): 0 (rows * cols) Multiply(): 0 (this.row * this.cols * m.cols) Program 8.6 at pp 270
26
SNU IDB Lab. Data Structures 26 Table of Contents Arrays Matrices Special Matrices Sparse Matrices
27
SNU IDB Lab. Data Structures 27 Special Matrix Definitions Diagonal Matrix M(i, j) = 0 for i = j Tridiagonal Matrix M(i, j) = 0 for |i – j| > 1 Lower Triangular Matrix M(i, j) = 0 for i < j Upper Triangular Matrix M(i, j) = 0 for i > j Symmetric Matrix M(i, j) = M(j, i) for all i, j
28
SNU IDB Lab. Data Structures 28 Diagonal Matrix An n x n matrix in which all nonzero terms are on the diagonal x(i, j) is on diagonal iff i = j Number of diagonal elements in an n x n matrix is n Non diagonal elements are zero Store diagonal only vs store n 2 whole 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4
29
SNU IDB Lab. Data Structures 29 The Class DiagonalMatrix public class DiagonalMatrix { int rows; // matrix dimension (no cols!) Object zero; // zero element Object [] element; // element array public DiagonalMatrix (int theRows, Object theZero) { if (theRow 0”); rows = theRows; zero = theZero; for (int i=0; i<rows; i++) element[i] = zero; //construct only the diagonal elements }
30
SNU IDB Lab. Data Structures 30 get() and set() for DiagonalMatrix public Object get (int i, int j) { checkIndex(i, j); // validate index if (i == j) return element[i – 1]; // return only the diagonal element else return zero; // nondiagonal element } public void set (int i, int j, Object newValue) { if (i == j) element[i – 1] = newValue; // save only the diagonal element else // nondiagonal element, newValue must be zero if (!((Zero)newValue).equalsZero()) throw new IllegalArgumenetException(“must be zero”); }
31
SNU IDB Lab. Data Structures 31 Tridiagonal Matrix The nonzero elements lie on only the 3 diagonals Main diagonal: M(i, j) where i = j Diagonal below main diagonal: M(i, j) where i = j + 1 Diagonal above main diagonal: M(i, j) where j = j - 1 1 1 0 0 0 0 2 2 2 0 0 0 0 3 3 3 0 0 0 0 4 4 4 0 0 0 0 5 5 5 0 0 0 0 6 6
32
SNU IDB Lab. Data Structures 32 Lower Triangular Matrix (LTM) An n x n matrix in which all nonzero terms are either on or below the diagonal. 1 0 0 0 2 3 0 0 4 5 6 0 7 8 9 10 x(i, j) is part of lower triangular iff i >= j Number of elements in lower triangle: 1+ 2+ 3+ … + n = n*(n+1) / 2 Store only the lower triangle
33
SNU IDB Lab. Data Structures 33 “Array of Arrays” Representation of LTM Use an irregular 2D array lengths of rows are not required to be the same 1 23 456 x[] 789l0
34
SNU IDB Lab. Data Structures 34 1D Array representation of LTM (1) Use row-major order, but omit terms that are not part of the lower triangle For the matrix 1 0 0 0 2 3 0 0 4 5 6 0 7 8 9 10 We get 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 How we can locate X[2][3]?
35
SNU IDB Lab. Data Structures 35 1D Array representation of LTM (2) Index of Element[i][j] Order is: row 1, row 2, row 3, … Row i is preceded by rows 1, 2, …, i-1 Size of row i is i Number of elements that precede row i is 1 + 2 + 3 + … + (i-1) = i * (i-1)/2 So element (i,j) is at position i * (i-1)/2 + j - 1 of the 1D array
36
SNU IDB Lab. Data Structures 36 Table of Contents Arrays Matrices Special Matrices Sparse Matrices
37
SNU IDB Lab. Data Structures 37 Sparse Matrices Sparse matrix Many elements are zero Dense matrix Few elements are zero The boundary between a dense and a sparse matrix is not precisely defined Structured sparse matrices Diagonal matrix Tridiagonal matrix Lower triangular matrix May be mapped into a 1D array so that a mapping function can be used to locate an element
38
SNU IDB Lab. Data Structures 38 Unstructured Sparse Matrices (USM) (1) Airline flight matrix: Aflight(n, n) airports are numbered 1 through n (say 1000 airports) Aflight(i, j) = list of nonstop flights from airport i to airport j 1000 x 1000 array of list references (4 bytes) to nonstop flight lists need 4,000,000 bytes (4G) However, only total number of flights = 20,000 (say) need at most 20,000 list references at most 80,000 bytes (80M) We need an economic representation!
39
SNU IDB Lab. Data Structures 39 Unstructured Sparse Matrices (USM) (2) Web page matrix: WEBPM(n, n) Millions of trillions of web pages (numbered 1 through n) WEBPM(i, j) = number of links from page i to page j The number of links is very very smaller than the number of web pages Web analysis authority page: page that has many links to it hub page: page having links to many authority pages Facts of Web Links Roughly n = 2 billion pages (and growing by 1 million pages a day) n x n array of ints 16 * 10 18 bytes (= 16 * 10 9 GB) Each page links to 10 (say) other pages on average On average there are 10 nonzero entries per row 20 billion links Space needed for nonzero elements is approximately 20 billion x 4 bytes = 80 billion bytes (= 80 GB)
40
SNU IDB Lab. Data Structures 40 Representation of USM Conceptualized into linear list in row-major order Scan the nonzero elements of the sparse matrix in row-major order Each nonzero element is represented by a triple (row, column, value) 0 0 3 0 4 0 0 5 7 0 0 0 0 0 0 0 2 6 0 0 list = row 1 1 2 2 4 4 column 3 5 3 4 2 3 value 3 4 5 7 2 6
41
SNU IDB Lab. Data Structures 41 Implementations of USM Naive Implementation of USM Do not consider numerous elements having 0 Java 2D array Implementation Methods after conceptualizing Linear List Array Linked List (Chain) Orthogonal List
42
SNU IDB Lab. Data Structures 42 USM implementation using Array Linear List row 1 1 2 2 4 4 list = column 3 5 3 4 2 3 value 3 4 5 7 2 6 element[] 0 1 2 3 4 5 row 1 1 2 2 4 4 column 3 5 3 4 2 3 value 3 4 5 7 2 6 0 0 3 0 4 0 0 5 7 0 0 0 0 0 0 0 2 6 0 0
43
SNU IDB Lab. Data Structures 43 USM Implementation through Chain -- One Linear List Per Row 0 0 3 0 4 0 0 5 7 0 0 0 0 0 0 0 2 6 0 0 row1 = [(3, 3), (5,4)] row2 = [(3,5), (4,7)] row3 = [] row4 = [(2,2), (3,6)] USM may be viewed as “array of linear list” Synonym: Array of row chains
44
SNU IDB Lab. Data Structures 44 USM implementation using Array of Row Chains 0 0 3 0 4 0 0 5 7 0 0 0 0 0 0 0 2 6 0 0 row[] 33 nul l 4553 7422 63 next valuecol
45
SNU IDB Lab. Data Structures 45 USM implementation using Orthogonal Lists Both row and column lists More expensive than array of row chains More complicated implementation Not much advantage! Node structure rowcol nextdown value
46
SNU IDB Lab. Data Structures 46 Row Lists 0 0 3 0 4 0 0 5 7 0 0 0 0 0 0 0 2 6 0 0 null 13 3 15 4 23 5 24 7 42 2 43 6 n n n row list[]
47
SNU IDB Lab. Data Structures 47 Column Lists 0 0 3 0 4 0 0 5 7 0 0 0 0 0 0 0 2 6 0 0 13 3 15 4 23 5 24 7 42 2 43 6 n n n column list[]
48
SNU IDB Lab. Data Structures 48 Orthogonal Lists 0 0 3 0 4 0 0 5 7 0 0 0 0 0 0 0 2 6 0 0 null 13 3 15 4 23 5 24 7 42 2 43 6 nn n nn n column list[] row list[]
49
SNU IDB Lab. Data Structures 49 Approximate Memory Requirements 500 x 500 matrix with 1994 nonzero elements Java 2D array: 500 x 500 x 4 bytes = 1G bytes Single Array Linear List: 3 x 4 bytes X 1994 = 23,928 = 24M bytes One Chain Per Row: 23928 + 500 x 4 = 25,928 = 26M bytes Orthogonal List: your job! row[] element[] 0 1 2 3 4 5 row 1 1 2 2 4 4 column 3 5 3 4 2 3 value 3 4 5 7 2 6 33 nu ll 45
50
SNU IDB Lab. Data Structures 50 Performance of Sparse Matrix implementations Matrix Transpose() with 500 x 500 matrix with 1994 nonzero elements Java 2D array 210 ms Array Linear List 6 ms One Chain Per Row 12 ms Matrix Addition with 500 x 500 matrices with 1994 and 999 nonzero elements Java 2D array 880 ms Array Linear List 18 ms One Chain Per Row 29 ms
51
SNU IDB Lab. Data Structures 51 Summary In practice, data are often in tabular form Arrays are the most natural way to represent it Reduce both the space and time requirements by using a customized representation This chapter Representation of a multidimensional array Row major and column major representation Develop the class Matrix Represent two-dimensional array Indexed beginning at 1 rather than 0 Support operations such as add, multiply, and transpose Introduce matrices with special structures Diagonal, triangular, and symmetric matrices Sparse matrix
52
SNU IDB Lab. Data Structures 52 JDK class: javax.vecmath.GMatrix public class Gmatrix { constructors GMatrix(int nRow, int nCol): Constructs an array of size nRow*nCol methods void add(GMatrix m1): Adds m1 to the matrix void sub(GMatrix m1): Subtracts m1 from the matrix void mul(GMatrix m1): Multiplies m1 to the matrix void negate(): Negates the matrix void transpose(): Transposes the matrix void invert(): Inverts the matrix double trace(): Returns the trace of the matrix }
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.