Presentation is loading. Please wait.

Presentation is loading. Please wait.

1PhiPsi2011 BINP, Novosibirsk Johann Zmeskal, SMI Vienna for the PANDA collaboration at an overview International Workshop on e+e- collisions from Phi.

Similar presentations


Presentation on theme: "1PhiPsi2011 BINP, Novosibirsk Johann Zmeskal, SMI Vienna for the PANDA collaboration at an overview International Workshop on e+e- collisions from Phi."— Presentation transcript:

1 1PhiPsi2011 BINP, Novosibirsk Johann Zmeskal, SMI Vienna for the PANDA collaboration at an overview International Workshop on e+e- collisions from Phi to Psi September 19-22, 2011, Budker INP, Novosibirsk, Russia

2 Existing facility - GSI: UNILAC < 15 MeV/u SIS < 1-2 GeV/u ESR < 0.8 GeV/u Facility for Antiproton and Ion Research PhiPsi2011 BINP, Novosibirsk 2 HESR PANDA SIS 100 SIS 300 SIS 18 CR/ RESR FLAIR NESR Super RFS FAIR @ GSI

3 3PhiPsi2011 BINP, Novosibirsk Facility for Antiproton and Ion Research

4 4PhiPsi2011 BINP, Novosibirsk PANDA Facility for Antiproton and Ion Research Antiproton production bunched mod 50 ns bunches cycle time: 10 s 10 8 per bunch Parallel Operation High duty cycle Rapidly cycling magnets SIS300

5 5PhiPsi2011 BINP, Novosibirsk Five Pillars of Research at FAIR Nuclear Structure Physics and Nuclear Astrophysics with RIBs Hadron Physics with Antiproton Beams Physics of Nuclear Matter with Relativistic Nuclear Collisions Atomic Physics and Applied Science with Highly Charged Ions and Low Energy Antiprotons Plasma Physics with Highly Bunched Beams

6 PhiPsi2011 BINP, Novosibirsk6 Stochastic cooling Stochastic cooling Injection Electron cooler High Energy Storage Ring  Up to 10 11 stored antiprotons Beam momentum: (1.5... 15) GeV/c Phase-space cooling  Fixed internal target Operation modes a)High luminosity: L = 2 · 10 32 cm -2 s -1   p/p  10 -4 b)High resolution: L = 10 31 cm -2 s -1   p/p  4 · 10 -5 PANDA @ HESR

7 PhiPsi2011 BINP, Novosibirsk7 Particle physics Hadron physics Nuclear physics  Study the strong interaction with antiprotons  Questions... Mechanism of confinement ? Inner structure of hadrons ? Origin of mass and spin (macroscopic properties) ? Exotic colour neutral objects? Physics goals of PANDA

8 8PhiPsi2011 BINP, Novosibirsk HadronSpectroscopy Hadron Spectroscopy Experimental Goals: mass, width & quantum numbers of resonances Charm Hadrons: charmonia, D-mesons, charm baryons to understand new XYZ states, D s (2317) and others Exotic QCD States: glueballs, hybrids, multi-quarks  Spectroscopy with Antiprotons: Production of states of all quantum numbers Resonance scanning with high resolution Physics goals of PANDA

9 9PhiPsi2011 BINP, Novosibirsk Nuclear Physics Charm in the Medium Mesons in nuclear matter Masses change in nuclei D-mass lower Lower D D threshold J/ψ absorption in nuclei Hypernuclei 3rd dimension in nuclear chart Double hypernuclei production via Ξ - capture  Λ Λ interaction in nucleus Other topics Short range correlations Color transparency Physics goals of PANDA

10 10PhiPsi2011 BINP, Novosibirsk Physics goals of PANDA HadronStructure Hadron Structure Generalized Parton Distributions ➔ Formfactors and structure functions Timelike Nucleon Formfactors Drell-Yan Process full PWA or polarized beam/target  PANDA Physics Report www-panda.gsi.de

11 11PhiPsi2011 BINP, Novosibirsk PANDA Detector @ FAIR 13 m

12 12PhiPsi2011 BINP, Novosibirsk PANDA Requirements Physics benchmarks: Hybrid charmonium: e.g. 7 photons, PWA Charmonium decays: e.g. J/Ψ → e + e - /µ + µ -, or with π 0 and γ Charm mesons: Weak decays in K 0 S and K ± Hypernuclei: Hyperon cascades Wide angle Compton scattering: High energy photons Proton formfactors: Efficient e ± identification Detector requirements: 4π acceptance High rate capability: 2x10 7 s -1 interactions Efficient event selection  Continuous acquisition Momentum resolution ~1% Vertex info for D, K 0 S, Y (cτ = 317 µm for D ± )  Good tracking Good PID (γ, e, µ, π, K, p)  Cherenkov, ToF, dE/dx γ-detection 1 MeV – 10 GeV  Crystal Calorimeter

13 13PhiPsi2011 BINP, Novosibirsk The PANDA Spectrometer Target Target SpectrometerForward Spectrometer

14 14PhiPsi2011 BINP, Novosibirsk PANDA - detection concept

15 PhiPsi2011 BINP, Novosibirsk15 L. Schmitt, GSI TARGET SPECTROMETERFORWARD SPECTROMETER Dipole Muon ID RICH Vertex Central Tracker Electromag. Calorimeters Muon Range System Drift Chambers Solenoid Target DIRC The PANDA Spectrometer

16 16PhiPsi2011 BINP, Novosibirsk Beam pipe The PANDA Spectrometer Micro Vertex Detector

17 17PhiPsi2011 BINP, Novosibirsk The PANDA Spectrometer Central tracker Forward GEM tracker

18 18PhiPsi2011 BINP, Novosibirsk The PANDA Spectrometer Cherenkov detectors

19 19PhiPsi2011 BINP, Novosibirsk The PANDA Spectrometer Electromagnetic crystal calorimeters

20 20PhiPsi2011 BINP, Novosibirsk The PANDA Spectrometer Instrumented yoke Solenoid magnet

21 21PhiPsi2011 BINP, Novosibirsk The PANDA Spectrometer Muon filter Target Luminositymonitor Dipole magnet

22 22PhiPsi2011 BINP, Novosibirsk The PANDA Spectrometer Driftchambers Muon range system DIRC

23 23PhiPsi2011 BINP, Novosibirsk Superconducting magnet  Central field: |B| = B z = 2 T  High field homogeneity:  2%  Dimensions inner bore:  1.9 m / length: 2.7 m Coil and cryostate z beam axis Target pipe warm hole  Outer yoke dimension:  2.3 m / length: 4.9 m  Total weight: ~ 300 t Iron flux return yoke Laminated layers for muon range system PANDA - Solenoid

24 24PhiPsi2011 BINP, Novosibirsk Superconducting magnet  Field integral (bending power): 2 Tm  Deflection of antiprotons with p =15 GeV/c: 2.2°  Bending variation:  15%  Vertical acceptance:  5°  Horizontal acceptance:  10°  Total weight: 200 t Forward tracking detectors partly integrated PANDA – Dipole magnet

25 25PhiPsi2011 BINP, Novosibirsk Beam pipe Target pipe Target dumping system Target production Vacuum pumps (VP) ~ 2 m Injection point Primary target setup  Appropriate cut-outs in solenoid magnet  Beam-target cross  Design compatible with all different options PANDA – Target system

26 26 PhiPsi2011 BINP, Novosibirsk Cluster-jet target  Well adjustable density  Constant luminosity  Cluster size: 100... 1000 atoms PANDA – Cluster-jet target system Full-size prototype Achieved density: max. 8  10 14 atoms / cm 2 Stable operation  Further density increase: New nozzle design

27 27PhiPsi2011 BINP, Novosibirsk Pellet target  Higher density  Better vertex definition  Pellet tracking system  Pellet size:  30  m  Pellet frequency: 10 kHz  Problem: Luminosity variations  Smaller pellet sizes  Higher frequency  Dedicated prototypes Achieved density:  4  10 15 atoms / cm 2 Pellet stream:  3 mm Hydrogen droplets: < 10  m, 144 kHz PANDA – Pellet target system

28 28PhiPsi2011 BINP, Novosibirsk Forward spectrometer Target spectrometer Micro-Vertex Detector Central tracking (Helix fit) Forward tracking (Straight lines) Straw-tube layers Straw-tube layers Outer tracker GEM stations GEM stations PANDA – Tracking

29 29PhiPsi2011 BINP, Novosibirsk Design of the MVD 4 barrels and 6 disks Continuous readout Inner layers: hybrid pixels (100x100 µm 2 ) Outer layers: double sided strips: Rectangles & trapezoids NXYTER readout Mixed forward disks (pixel/strips) Challenges Low mass supports Cooling in a small volume Radiation tolerance PANDA – Micro Vertex Detector

30 30 Central Tracker  σ rφ ~150µm, σ z ~1mm  δp/p~1% (with MVD)  Material budget ~1% X 0  Straw Tube Tracker 27 µm thin mylar tubes, 1 cm Ø Stability due to 1 bar overpressure  GEM Time Projection Chamber Continuous sampling GEMs to reduce ion feedback Online track finding Forward GEM Tracker  Large area GEM foils  Ultra thin coating PANDA – Central tracker PhiPsi2011 BINP, Novosibirsk

31 31PhiPsi2011 BINP, Novosibirsk Detector Layout  4500 straws in 20-26 layers  Tube made of 27 µm thin Al-mylar, Ø=1cm  R in = 150 mm, R out = 420 mm l=1500 mm  Self-supporting straw double layers at ~1 bar overp.(Ar/CO 2 ) Material Budget Max. 26 layers, 0.05 % X/X 0 per layer Total 1.3% X/X 0 Detector performance  r/  resolution: 130 µm  z resolution: ~ 1 mm  Prototype test at COSY-TOF PANDA – Straw tubes

32 32PhiPsi2011 BINP, Novosibirsk PANDA PID Requirements: Particle identification essential Momentum range 200 MeV/c – 10 GeV/c Different processes for PID needed PID Processes:  Cherenkov radiation: above 1 GeV Radiators: quartz, aerogel, C 4 F 10  Energy loss: below 1 GeV Best accuracy with TPC  Time of flight Problem: no start detector  Electromagnetic showers: EMC for e and γ PANDA – Particle IDentification

33 33PhiPsi2011 BINP, Novosibirsk Forward spectrometer Target spectrometer Barrel DIRC RICH D etection of I nternally R eflected C herenkov light Radiator material: Fused silica  3   /K separation 0.8 GeV/c  p  5 GeV/cC Radiator materials: Aerogel / C 14 F 10   /K separation 2 GeV/c  p  15 GeV/c R ing I maging CH erenkov detector Disc DIRC PANDA – Cherenkov detectors

34 34PhiPsi2011 BINP, Novosibirsk Forward spectrometer Target spectrometer Barrel EMC Shashlyk calorimeter Endcap structures Operated at -25°C Cristal: PbWO 4 ~ 15,000 cristals Lead-scintillator sandwiches 351 modules (13 rows / 27 columns) PANDA – Calorimeter

35 35PhiPsi2011 BINP, Novosibirsk Barrel Calorimeter 11000 PWO Crystals LA-SiPM readout, 2x1cm 2 σ(E)/E~1.5%/√E + const. End cap 4000 PWO crystals High occupancy in center LA-SiPM or VPT PANDA PWO Crystals PWO is dense and fast Low γ threshold  Increase light yield: - operation at -25°C (4xCMS) Challenges: - temperature stable to 0.1°C - control radiation damage - low noise electronics Delivery of crystals started PANDA – Calorimeter

36 36PhiPsi2011 BINP, Novosibirsk Forward spectrometer Target spectrometer Barrel tile hodoscope Time resolution: (50...100) ps Scintillator slabs or pads of multigap resistive plate chambers (RPC) Scintillator wall Scintillator slabs Time resolution: ~ 50 ps Quad module Scintillator SiPM PANDA – Time-of-flight systems

37 37PhiPsi2011 BINP, Novosibirsk PANDA – DAQ Self triggered readout Components: Time distribution system Intelligent frontends Powerful compute nodes High speed network Data Flow: Data reduction Local feature extraction Data burst building Event selection Data logging after online reconstruction Programmable Physics Machine

38 38PhiPsi2011 BINP, Novosibirsk FAIR will offer unique opportunities for nuclear and hadron physics, plasma and atomic physics PANDA is THE DETECTOR to access the physics in the charm quark sector  Nearly 4  acceptance  High momentum resolution ~1%  Precise vertex resolution ~ 100  m  Good particle identification ( , e ,  ,  , p )  Photon detection in a wide range ( 1 MeV... 10 GeV)  High energy resolution ~ few % (or better)  Technical design finished 2011  Installation in 2016 Summary Summary

39 39PhiPsi2011 BINP, Novosibirsk U Basel IHEP Beijing U Bochum IIT Bombay U Bonn IFIN-HH Bucharest U & INFN Brescia U & INFN Catania JU Cracow TU Cracow IFJ PAN Cracow GSI Darmstadt TU Dresden JINR Dubna (LIT,LPP,VBLHE) U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen KVI Groningen IKP Jülich I + II U Katowice IMP Lanzhou U Lund U Mainz U Minsk ITEP Moscow MPEI Moscow TU München U Münster BINP Novosibirsk IPN Orsay U & INFN Pavia IHEP Protvino PNPI Gatchina U of Silesia U Stockholm KTH Stockholm U & INFN Torino Politechnico di Torino U & INFN Trieste U Tübingen TSL Uppsala U Uppsala U Valencia SMI Vienna SINS Warsaw TU Warsaw more than 400 physicists from 53 institutions in 16 countries Thank you!


Download ppt "1PhiPsi2011 BINP, Novosibirsk Johann Zmeskal, SMI Vienna for the PANDA collaboration at an overview International Workshop on e+e- collisions from Phi."

Similar presentations


Ads by Google