Download presentation
Presentation is loading. Please wait.
1
Lecture 10 The Label Correcting Algorithm
8
Label Correcting Algorithm
9
An Example 3 Initialize d(1) := 0; d(j) := for j 1 1 2 4 5 36 7 2 3 3 1 6 -2 3 2 -4 43 0 In next slides: the number inside the node will be d(j). Violating arcs will be in thick lines.
10
An Example 3 Generic Step An arc (i,j) is violating if d(j) > d(i) + c ij. 0 2 3 3 1 6 -2 3 2 -4 43 Pick a violating arc (i,j) and replace d(j) by d(i) + c ij. 3
11
An Example 3 Generic Step An arc (i,j) is violating if d(j) > d(i) + c ij. 0 2 3 3 1 6 -2 3 2 -4 43 Pick a violating arc (i,j) and replace d(j) by d(i) + c ij. 3 6
12
An Example 3 Generic Step An arc (i,j) is violating if d(j) > d(i) + c ij. 0 2 3 3 1 6 -2 3 2 -4 43 Pick a violating arc (i,j) and replace d(j) by d(i) + c ij. 3 6 3
13
An Example 3 Generic Step An arc (i,j) is violating if d(j) > d(i) + c ij. 0 2 3 3 1 6 -2 3 2 -4 43 Pick a violating arc (i,j) and replace d(j) by d(i) + c ij. 3 6 3 5
14
An Example 3 Generic Step An arc (i,j) is violating if d(j) > d(i) + c ij. 0 2 3 3 1 6 -2 3 2 -4 43 Pick a violating arc (i,j) and replace d(j) by d(i) + c ij. 3 6 3 5 4
15
An Example 3 Generic Step An arc (i,j) is violating if d(j) > d(i) + c ij. 0 2 3 3 1 6 -2 3 2 -4 43 Pick a violating arc (i,j) and replace d(j) by d(i) + c ij. 3 6 3 5 4 6
16
An Example 3 Generic Step An arc (i,j) is violating if d(j) > d(i) + c ij. 0 2 3 3 1 6 -2 3 2 -4 43 Pick a violating arc (i,j) and replace d(j) by d(i) + c ij. 3 6 3 5 4 62
17
An Example 3 Generic Step An arc (i,j) is violating if d(j) > d(i) + c ij. 0 2 3 3 1 6 -2 3 2 -4 43 Pick a violating arc (i,j) and replace d(j) by d(i) + c ij. 3 6 3 5 4 62 9
18
An Example 3 Generic Step An arc (i,j) is violating if d(j) > d(i) + c ij. 0 2 3 3 1 6 -2 3 2 -4 43 Pick a violating arc (i,j) and replace d(j) by d(i) + c ij. 3 6 3 5 4 62 9 No arc is violating The distance labels are optimal We now show the predecessor arcs.
30
Modified Label Correcting Algorithm
31
The Modified Label Correcting Algorithm 3 Initialize d(1) := 0; d(j) := for j 1 1 2 5 4 36 7 2 3 3 1 6 -2 3 2 -4 43 0 In next slides: the number inside the node will be d(j). LIST := {1}
32
An Example 3 Generic Step Take a node i from LIST 0 2 3 3 1 6 -2 3 2 -4 43 Update(i): for each arc (i,j) with d(j) > d(i) + c ij replace d(j) by d(i) + c ij. 3 LIST := {1}LIST := { } 6 LIST := { 2 }LIST := { 2, 3 } 3 LIST := { 2, 3, 4 } 0
33
An Example 3 Take a node i from LIST 0 2 3 3 1 6 -2 3 2 -4 43 Update(i): for each arc (i,j) with d(j) > d(i) + c ij replace d(j) by d(i) + c ij. 3 LIST := {1}LIST := { } 6 LIST := { 2 }LIST := { 2, 3 } 3 LIST := { 2, 3, 4 } 3 LIST := { 3, 4 } 4 5 LIST := { 3, 4, 5 }
34
An Example 3 Take a node i from LIST 0 2 3 3 1 6 -2 3 2 -4 43 Update(i): for each arc (i,j) with d(j) > d(i) + c ij replace d(j) by d(i) + c ij. 3 6 3 4 5 LIST := { 3, 4, 5 } 3 LIST := { 4, 5 }
35
An Example 3 Take a node i from LIST 0 2 3 3 1 6 -2 3 2 -4 43 Update(i): for each arc (i,j) with d(j) > d(i) + c ij replace d(j) by d(i) + c ij. 3 6 3 4 5 LIST := { 3, 4, 5 } LIST := { 4, 5 } 4 LIST := { 5 } 6 LIST := { 5, 6 }
36
An Example 3 Take a node i from LIST 0 2 3 3 1 6 -2 3 2 -4 43 Update(i): for each arc (i,j) with d(j) > d(i) + c ij replace d(j) by d(i) + c ij. 3 6 3 4 5 LIST := { 3, 4, 5 } LIST := { 4, 5 }LIST := { 5 } 6 LIST := { 5, 6 } 5 LIST := { 6 }
37
An Example 3 Take a node i from LIST 0 2 3 3 1 6 -2 3 2 -4 43 Update(i): for each arc (i,j) with d(j) > d(i) + c ij replace d(j) by d(i) + c ij. 3 6 3 4 5 LIST := { 3, 4, 5 } LIST := { 4, 5 }LIST := { 5 } 6 LIST := { 5, 6 }LIST := { 6 } 6 LIST := { } 2 LIST := { 3 } 9 LIST := { 3, 7 }
38
An Example 3 Take a node i from LIST 0 2 3 3 1 6 -2 3 2 -4 43 Update(i): for each arc (i,j) with d(j) > d(i) + c ij replace d(j) by d(i) + c ij. 3 6 3 4 5 LIST := { 3, 4, 5 } LIST := { 4, 5 }LIST := { 5 } 6 LIST := { 5, 6 }LIST := { 6 }LIST := { } 2 LIST := { 3 } 9 LIST := { 3, 7 } 2 LIST := { 7 }
39
An Example 3 Take a node i from LIST 0 2 3 3 1 6 -2 3 2 -4 43 Update(i): for each arc (i,j) with d(j) > d(i) + c ij replace d(j) by d(i) + c ij. 3 6 3 4 5 LIST := { 3, 4, 5 } LIST := { 4, 5 }LIST := { 5 } 6 LIST := { 5, 6 }LIST := { 6 }LIST := { } 2 LIST := { 3 } 9 LIST := { 3, 7 }LIST := { 7 } 9 LIST := { }
40
An Example 3 LIST is empty. The distance labels are optimal 0 2 3 3 1 6 -2 3 2 -4 43 3 6 3 4 5 LIST := { 3, 4, 5 } LIST := { 4, 5 }LIST := { 5 } 6 LIST := { 5, 6 }LIST := { 6 }LIST := { } 2 LIST := { 3 } 9 LIST := { 3, 7 }LIST := { 7 }LIST := { } Here are the predecessors
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.