Presentation is loading. Please wait.

Presentation is loading. Please wait.

ASTM International Standards, Student Projects, and Workforce Development Building the Future of Standardization in COPANT April 22, 2014 – Havana, Cuba.

Similar presentations


Presentation on theme: "ASTM International Standards, Student Projects, and Workforce Development Building the Future of Standardization in COPANT April 22, 2014 – Havana, Cuba."— Presentation transcript:

1 ASTM International Standards, Student Projects, and Workforce Development Building the Future of Standardization in COPANT April 22, 2014 – Havana, Cuba

2 What is ASTM? Global platform for the development of international consensus standards and related services Private sector, not-for-profit organization Founded in 1898 Headquartered outside of Philadelphia. Other offices: – Beijing, China – Brussels, Belgium – Mexico City, Mexico – Ottawa, Canada – Washington, DC, USA 30,000 technical expert members from 150 countries Participating Members work within 143 technical committees — often in multiple committees 12,000+ total ASTM standards 90 industry areas covered 2

3 ASTM Academic Outreach Survey to members, customers asked: Knowledge of ASTM standards important? – 60% see it as “Important, Very important or Critical” Provide on-the-job training about ASTM standards? – 34% - Yes – 44% - Possibly or probably 3 Why learn about standards?

4 What ASTM Offers Students/Professors Students – Free membership – Scholarships – Project Grants – Paper competitions – Internship in Washington DC – Virtual seminars – Campus visits Professors – Professor’s Tool Kit – Low cost standards for class – Suggested curricula – Bi-Annual Professor of the Year Award – Guest lecturers – Videos 4

5 5 ABET Engineering Standards Education Requirement Criterion 4: Professional Requirements (2000, ABET) – The curriculum must prepare students for engineering practice culminating in a major design experience based on the knowledge and skills acquired in earlier coursework and incorporating engineering standards and realistic constraints that include most of the following considerations: economic, environmental, sustainability, manufacturability, ethical, health and safety, social, and political.

6 6 Best Practices for Integration of Standards Education in Curriculum 6 Early exposure to standards Student membership Hands-on activities Specifying standards for projects

7 7 Early Exposure to Standards 7 ASTM E8 Standard Test Methods for Tension Testing of Metallic Materials Scope, purpose, specimens Comparison of test results Basic mechanical property tests

8 8 8 Student Membership

9 9 Hands-on Activities 9 ■ Apparatus set-up and calibration ■ Preparation of test specimens ■ Recording the results ■ Performing the calculations ■ Writing a test report

10 10 Key Examples from Accredited Universities Rensselaer Polytechnic Institute 10 Properties of Engineering Materials II (3 rd year students) 3 hours per week lecture, 2 hours laboratory Study several mechanical property test standards to gain an understanding of what gives a metal strength Concluding exercise requires students to select a random metal and strengthen it in the laboratory

11 11 Key Examples from Accredited Universities Massachusetts Institute of Technology 11 Mechanics of Structures and Soils (3 rd year students) 4 hours per week lecture, 4 hours laboratory, 1 hour recitation Both the underlying theory and actual geotechnical test procedures are studied Techniques and approximations used in structural and geotechnical engineering using laboratory assignments that are consistent with the requirements in the actual technical standards

12 12 Key Examples from Accredited Universities Kettering University 12 Properties of Polymers (4 th year students) 4 hours per week lecture Test standards are studied to learn fluid properties and time dependent behavior of plastics Students are required to develop a standard test procedure for a sample plastic product, correlate it to an existing testing standard, and relate the behavior of the product to mechanical and thermal behaviors of polymers

13 13 Specifying Standards for Projects 13 Interpreting test results Realistic constraints Supervising testing Social concerns (green standards)

14 2012 Project Grant Winners o University of Pennsylvania o Titan: A Powered, Upper Body Exoskeleton; o Case Western Reserve University o Mechanical Characterization of 316 LVM Wires; o University of Alabama o Interface for Ultrasonic C-Scan System; o San Diego State University o Local Deformations and Failure Mechanisms in Tapered Sandwich Core Closeouts o University of Pennsylvania o Expandable Endotracheal Tube for Veterinary Pati ents

15 15 Conclusion Technical standards provide a common language to discuss complex technical issues and bridge the gap between the classroom and real-world applications Awareness, exposure and hands-on use of technical standards is critical in helping future engineers adapt to the workplace

16 Thank you Jim Olshefsky jolshefs@astm.org 16 www.astm.org/campus


Download ppt "ASTM International Standards, Student Projects, and Workforce Development Building the Future of Standardization in COPANT April 22, 2014 – Havana, Cuba."

Similar presentations


Ads by Google