Download presentation
Presentation is loading. Please wait.
1
General Phase Diagram Sections
Arthur D. Pelton Centre de Recherche en Calcul Thermochimique École Polytechnique de Montréal Montréal, Québec, CANADA General rules of construction of all true phase diagram sections; Proper choice of variables and constants to give a “true” phase diagram section (with a unique equilibrium state at each point); A general algorithm for calculating all true phase diagram sections. 1
2
CaO-MgO: phase diagram
2
3
Diagram: CaO-Al2O3-SiO2 3
4
C-Fe-W System at 5 wt% W 4
5
A Phase Diagram for the Fe-Cr-V-C System
5
6
Fe-Cr-V-C system at 1.5 wt% Cr and 0.1 wt% V
6
7
P–T diagram for Al2TiO5 7
8
Fe-O2 System 8
9
System Fe-Cr-O2 9
10
SO2-O2-Cu System at 1000 K 10
11
Fe2O3-MgO-SiO2-O2 System SiO2/(Fe2O3+ MgO + SiO2) = 0.20 in air
11
12
Fe-Cr-S-O System 12
13
A Phase Diagram for the Fe-Cr-V-C System
13
14
The Law of Adjoining Phase Regions
«As a phase boundary line is crossed, one and only one phase appears or disappears.» 14
15
(a1 + a2 + … + an) (a1 + a2 + … + an) (a1 + a2 + … + an) + b + g
A node in a general true phase diagram section. 15
16
CaO-MgO: phase diagram
16
17
T XB B A L b + L a + b + L a + L a b a + b
An isobaric binary temperature-composition diagram with the eutectic “opened-up” to show that this is an infinitely narrow 3-phase region. 17
18
SO2-O2-Cu System at 1000 K 18
19
f1 a + b f2 b + g a + g a + b + g a b g A “potential-potential” phase diagram “opened-up” to show that the lines are infinitely narrow 2-phase regions. 19
20
Potential Variables Extensive Variables T (temperature) P (pressure)
(the same for all phases at equilibrium) T (temperature) P (pressure) mi (chemical potential) Extensive Variables (not the same for all phases at equilibrium) Xi (composition) V (volume) 20
21
If only potential variables are held constant, then all tie-lines lie in the plane of the section. In this case, the compositions of the individual phases at equilibrium can be read from the diagram and the lever rule applies. 21
22
Zero Phase Fraction (ZPF) Lines
MC fcc bcc M7C3 M23C6 22
23
Zero Phase Fraction (ZPF) Lines
LIQUID LIQUID + a L+b SOLID a SOLID b 2 SOLIDS (a + b) Solidus Liquidus Solvus line a LIQUID b 23
24
Fe-S-O Predominance diagram (ZPF lines)
24
25
Choice of variables to always give a true phase diagram (single-valued) everywhere
25
26
N-Component System (A-B-C-…-N)
Gibbs-Duhem: Phase Diagram 26
27
Choice of variables N-component system
(1) Choose n potentials: f1, f2, … , fn (2) From the non-corresponding extensive variables (qn+1, qn+2, … ), form (N+1-n) independent ratios (Qn+1, Qn+2, …, QN+1). Example: [f1, f2, … , fn; Qn+1, Qn+2, …, QN+1] are then the (N+1) variables of which 2 are chosen as axes and the remainder are held constant. Phase Diagram 27
28
MgO-CaO Binary System S T V -P nMgO mMgO nCaO mCaO f1 = T f2 = -P
Phase Diagram 28
29
CaO-MgO: phase diagram
29
30
Fe-Cr-S-O System S T V -P nFe mFe nCr mCr f1 = T f2 = -P
Phase Diagram 30
31
Fe-Cr-S-O System 31
32
Pressure vs. Volume diagram for H2O
S+L L+G S+G P V This is NOT a true phase diagram. Phase Diagram 32
33
Fe-Cr-C System S T V -P nC mC nFe mFe nCr mCr Requirement: f1 = T
f2 = -P f3 = mC (NOT OK) (OK) Requirement: Phase Diagram 33
34
This is NOT a true phase diagram.
Fe-Cr-C system, T = 1300 K, XCr = nCr/(nFe+nCr+nC) vs. (carbon activity) M23C6 M7C3 bcc fcc cementite log(ac) Mole fraction of Cr 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -3 -2 -1 1 2 This is NOT a true phase diagram. Phase Diagram 34
35
“Corresponding” phase diagrams of the Fe-O system
a-Iron g-Iron d-Iron Liquid iron Liquid oxide Wustite Magnetite Hematite -500 -400 -300 -200 -100 RT ln PO2 (kJ) + a-Iron + Magnetite Oxygen Liquid iron Liquid iron + liquid oxide 700 900 1100 1300 1500 1700 1900 0.50 0.54 0.58 0.62 Mole fraction XO Temperature (K) 35
36
Other Sets of Extensive Variables and Corresponding Potentials
Gibbs-Duhem: Gibbs-Duhem: 36
37
Mg-Si binary phase diagram
37
38
Mg-Si, DH vs XSi phase diagram
38
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.