Download presentation
Presentation is loading. Please wait.
Published byAmbrose Lane Modified over 9 years ago
1
1 L24:Crosstalk-Concerned Physical Design 1999. 10 Jun Dong Cho Sungkyunkwan Univ. Dept. ECE E-Mail : Jdcho@skku.ac.krJdcho@skku.ac.kr Homepage : vada.skku.ac.kr
2
2 Agenda Characteristics of Crosstalk Basic Approaches in Crosstalk Avoidance Recent Approaches in Crosstalk Avoidance Routing Conclusion
3
3 Characteristics of Crosstalk Introduction Trends on Crosstalk Problem What is Crosstalk in Signal Line? Special Requirement for Crosstalk Avoidance Crosstalk Avoidance in Low Power Design Issues for Noise Algorithmic Approaches Crosstalk Avoidance
4
4 Introduction The state-of-the-art in digital integrated circuit is rapidly approaching a point where conventional device signal models are no longer effective in predicting the behavior of ICs. The challenge of maintaining signal integrity is present in designs implemented in deep sub-micron technology that operates at speeds quickly approaching 1GHz and above. Smaller devices, more condensed geometry and smaller signal swing are used to achieve this high-speed performance.This high-speed approach has yielded a higher noise-coupling rate and a lower noise margin as the side effects. Consequently, signal integrity and interconnect modeling have become more critical than ever. In the scaling from 1.8 um to 0.9 um pitch, line-to-line capacitance increases from 46% to 68% of full-loaded self capacitance
5
5 Trends on Crosstalk Problem Crosstalk is a well-known phenomenon at all levels of electronic packaging from system level cables through wires on printed circuit board,multi-chip-modules to chip level routing and inside of VLSI interconnection. Crosstalk causes undesired signal noise to be coupled from an active line (Aggressor) into a quiet line (Victim). Depending on its magnitude, the induced noise onto the victim may influence the timing behavior of the victim signal by increasing its setup time. It may even cause failure by inducing false pulses or causing false signal levels which may be propagated through the circuit. With increasing integration density and reduced cycle times, these effects become more visible and more destructive, so they need to be handled more carefully. Crosstalk needs to be considered in particular on VLSI chips with sub- micron structures and today ’ s large die size.
6
6 What is Crosstalk in Signal Line? Crosstalk is a capacitive and inductive interference caused by the noise voltage developed on signal lines when nearby lines change state It is a function of the separation between signal lines, the linear distance that signals lines run parallel with each other. The faster edge rates of today's logic devices greatly increase the possibility of coupling or crosstalk between signals. To maximize speed, crosstalk must be reduced to levels where no extra time is required for the signal to stabilize. Signals such as clocks, that are highly sensitive to crosstalk should be isolated by reference planes from signals on other layers and/or by extrawide line-to-line spacing.
7
7 Special Requirement for Crosstalk Avoidance Data buses : Crosstalk between buses tends to be data-patterns-sensitive and it is worse when all addresses or data lines change in the same direction at the same time. Signals common to a given bus can run next to other signals in the bus, but not with other buses or signals. Memory address and data signals : A data-to-address-line cross-coupling may upset address lines sufficiently to cause write signals to incorrect memory locations. Therefore, high-speed memory address and data signals need to be isolated by reference planes and by extra-wide line-to-line spacing from other signals, particularly other memory chip-selects, address line, and data buses. Clock signals and Strobes : To meet crosstalk limits, clock signals must be isolated and confined between reference layers. Other signals must not be mixed with clocks. Clock signals on a given layer must have extra spacing between lines. Clock signals of different frequencies must have extra-wide spacing, as clock signals and other signals if they are to be mixed. ECL and analog : ECL and analog signals require a high degree of isolation from TTL-level or CMOS-level signals. They must be physically isolated in separate board areas with separate ground and voltage planes that are isolated from TTL or CMOS switching currents.
8
8 Crosstalk Avoidance in Low Power The average dynamic power consumed by a CMOS gate is given below, where is the load capacity at the output of the node, is the supply voltage, is the global clock period, N is the number of transitions of the gate output per clock cycle, is the load capacity due to input capacitance of fanout gates, and is the load capacity due to the interconnection tree formed between the driver and its fanout gates. Logic synthesis for low power attempts to minimize,whereas physical design for low power tries to minimize. Here consists of two terms, where is the capacitance of net i due to its crosstalk, and is the substrate capacitance of net i. For low power layout applications, power dissipation due to crosstalk is minimized by ensuring that wires carrying high activity signals are placed sufficiently far from the other wires. Similarly, power dissipation due to substrate capacitance is proportional to the wire length and its signal activity. In this paper, we aim to minimize.
9
9 Multi-layer of Lines Cross-coupling is very significant From above, below, left, or right If left and right adjacent lines are transitioning at the same time that the signal of interest transitions, we have an increased loading effect (referred to as Miller multiplication) C total = C down + C up + 2 C left + 2 C right T delay = 2.3 R 0 (C line +C load ) + R line C line +2.3 R line C load Gate delay is decreasing with dimensional scaling RC delay is increasing with dimensional scaling RC delay in long lines is proportional to L square For lines longer than “ L ” Vnoise = (CLL/Ctotal) Vdd, CLL is total simultaneous switching coupling capacitance
10
10 Design Issues for Noise Reduce coupling noise Increase driver strength Increase spacing between wires or route signal lines alternately with power or ground. Constraint-driven routing Reducing power supply noise Ensure that power grid is sized correctly for the load it is serving to reduce IR drop Add on-chip decoupling capacitance to reduce delta-I noise. With increasing use of dynamic circuits, there is less NWELL capacitance on-chip. When employing cores, one must be sensitive to the quality of the interconnects which will carry signals between cores and the ASIC portion of the network
11
11 Approaches to Crosstalk Avoidance Analysis Efficient mode for filtering and driver for physical design Mixture of static/ dynamic analysis tools needed Interconnect Planning Present routing methodology increasingly inadequate Mixture of planning & constrained synthesis needed Efficient Noise metrics Noise avoidance routing Clocking - managing skew, interconnect vs. device variability Buffer Insertion - needs to better integrated into design methodology Use of design guidelines necessary in practice Noise/ SI problems are difficult and pervasive, but are TRACTABLE!!!
12
12 Noise Avoidance
13
13 Interference Graph Node: nets/segments of nets Undirected Edges: horizontal constraint Directed Edges: Vertical Constraints Edge Weights: Design Rules, Coupling Rules
14
14 Transistor Sizing X is the set (vector) of transistor sizes Minimize Area(X) subject to Delay(X) <= Tspec Minimize Power(X) subject to Delay(X) <= Tspec x A B C D E Problem with interacting paths (1) Better to size A than to size all of B,C and D (2) If X-E is near-critical and A-D is critical, size A (not D)
15
15 Basic Approaches in Crosstalk Avoidance Segregation / Spacing / Ground Shielding Net Ordering Layer Assignment Pattern Routing
16
16 Segregation / Spacing / Ground Shielding (1)
17
17 Segregation / Spacing / Ground Shielding (2) Segregation : Dividing many (noisy) and less(quiet) signal transition wire and merging group by group.(use with shielding) Spacing : the method that signal wire to shun each other, when signal net is close to each other (routing channel is not wide) Shielding : blocking signal line with ground line to minimize signal interference to the other wire.(ground bounce occurs and must broaden the ground line)
18
18 Net Ordering Left : Unordered track permutation Right : Ordered track permutation for minimizing crosstalk Net ordering is used for minimize crosstalk-critical region between each lines. When, long line and long line is close together, crosstalk between them is more larger than long line and short line. So, we must change the permutation of track for minimizing crosstalk.
19
19 Layer Assignment When using more than 3 layer in channel routing, adjacent signal wire in same layer results crosstalk. For example, left figure makes more crosstalk than right. Layer assignment problem is solved by integer linear programming or dynamic programming method.
20
20 Pattern Routing In global routing, global interconnection wires have more long and thick wire than local interconnection wire. Pattern routing method Make wire pattern satisfying design specification. Choose corresponding wire pattern. Minimize total crosstalk.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.