Download presentation
Presentation is loading. Please wait.
Published byBlanche Willis Modified over 9 years ago
1
Kathmandu Valley Intelligent Traffic System (KV-ITS) Bikash Maharjan (16207) Bikram Thapa (16208) Roshan Manandhar (16228) Yugesh Shrestha (16246) Supervisor Dr. Arun K. Timalsina Co-Supervisor Mr. Saroj Yadav, EB pearls
2
Traffic Jam => Problem
3
System Overview iPhone Application Web Interface Database Image Processing Past Data Analysis Wireless Traffic Data Generated Traffic Information System Display CCTV Live Video Input
4
Database Update Jam Update Road Condition Data Visualization Input Web Interface Input Generated Traffic Data Web Interface Implementation
5
Image Processing Overview Image Processing Algorithms Traffic Density Traffic Flow Rate CCTV Video Data Outputs Extract Frame input
6
Traffic DensityTraffic Flow Rate free Congestion Levels High Moderate slight Database Store Fuzzy Classifier inputs outputs Image Processing Overview
7
Traffic Density Estimation..... Consecutive Frame Difference ++ =....... Accumulate Differenced Images Detected Lane Model D1D1+D2D n-1 + D n Lane Detection Video Frame Sequence
8
Traffic Density Estimation (Area=No. of white pixels) Lane Mask Model.. 1.Mask 3. Output after difference at T sec.. Input Video Data 2.Difference Background Model
9
Traffic Flow Rate Estimation N frameN+5 sec frame Video Sequence 1. Find Feature Points2. Track Feature Points Main Processes:
10
Traffic Flow Rate Estimation
11
Results At Baneshwore Time ( 5 sec interval)
12
Results Time ( 5 sec interval)
13
So Far Web Interface Database Image Processing Wireless Traffic Data Generated Traffic Information System iPhone Application Display CCTV Live Video Input
14
Information Mapping Congestion Status Updated CCTV image Reason/ Details Live Streaming
15
Shortest path based on real time weights Thapathali Maitghar Kupondole Teku Tripureswor Sahid-gate Patan Dhoka Jwalakhel Nabil Bank Bhadrakali Singhadurbar New Baneshwor Tinkune New Plaza Anamnagar BICC Bir Hospital Start Destination 9 5 4 2 2 11 2 1 1 1 6 10 4 1 1 1 Shortest path = 22 min 9:30 am
16
Practical scenario Thapathali Maitghar Kupondole Teku Tripureswor Sahid-gate Patan Dhoka Jwalakhel Nabil Bank Bhadrakali Singhadurbar New Baneshwor Tinkune New Plaza Anamnagar BICC Bir Hospital Destination 9 5 4 2 2 11 2 1 1 1 6 10 4 1 1 1 6 5 2 5 6 1 1 3 3 5 Shortest path = 33 min Next shortest path = 30 min Start 9:30 am 18 mins
17
Best Path Algorithm Successfully designed and developed It first estimates the time to reach the node then it uses the predicted weight at that estimated time to update the graph dynamically. but it’s level of accuracy completely depends upon the level of prediction analysis.
18
Best Path Algorithm Destination Thapathali Maitghar Kupondole Teku Tripureswor Sahid-gate Patan Dhoka Pulchowk Nabil Bank Bhadrakali Singhadurbar 6 2 2 1 1 1 1 1 1 5 1 1 9:30 am Start
19
Best Path Algorithm Start 9:30 am Destination 9:36 Thapathali Maitghar Kupondole Teku Tripureswor Sahid-gate Patan Dhoka Pulchowk Nabil Bank Bhadrakali Singhadurbar 6 2 2 1 1 1 1 1 1 5 1 1 3
20
Best Path Algorithm Start 9:30 am Destination 9:36 9:39 Thapathali Maitghar Kupondole Teku Tripureswor Sahid-gate Patan Dhoka Pulchowk Nabil Bank Bhadrakali Singhadurbar 6 2 2 1 1 1 1 1 1 5 1 1 3 3 2
21
Best Path Algorithm Start 9:30 am Destination 9:36 9:39 9:41 Thapathali Maitghar Kupondole Teku Tripureswor Sahid-gate Patan Dhoka Pulchowk Nabil Bank Bhadrakali Singhadurbar 6 2 2 1 1 1 1 1 1 5 1 1 3 2 2 2 3
22
Best Path Algorithm Start 9:30 am 9:36 9:39 9:41 9:42 Destination Thapathali Maitghar Kupondole Teku Tripureswor Sahid-gate Patan Dhoka Pulchowk Nabil Bank Bhadrakali Singhadurbar 6 2 2 1 1 1 1 1 1 5 1 1 3 2 2 2 3 2
23
Best Path Algorithm Start 9:30 am 9:36 9:39 9:41 9:42 Thapathali Maitghar Kupondole Teku Tripureswor Sahid-gate Patan Dhoka Pulchowk Nabil Bank Bhadrakali Singhadurbar 6 2 2 1 1 1 1 1 1 5 1 1 3 2 2 2 3 2 Destination 9:44
24
Best Path Algorithm Start 9:30 am 9:36 9:39 9:41 9:42 9:43 9:45 9:46 Destination 9:44 Thapathali Maitghar Kupondole Tripureswor Sahid-gate Patan Dhoka Pulchowk Nabil Bank Bhadrakali Singhadurbar 6 2 2 1 1 1 1 1 1 5 1 1 3 2 Teku 2 2 2 2 11 3
25
Best Path Algorithm TekuStart 9:30 am 9:36 9:39 9:41 9:42 9:43 9:45 9:46 Thapathali Maitghar Kupondole Tripureswor Sahid-gate Patan Dhoka Pulchowk Nabil Bank Bhadrakali Singhadurbar 6 2 2 1 1 1 1 1 1 5 1 1 Destination 9:44 3 2 2 2 2 2 11 3
26
Best Path Algorithm TekuStart 9:30 am 9:36 9:39 9:41 9:44 9:43 9:45 9:46 Destination 9:47 Thapathali Maitghar Kupondole Tripureswor Sahid-gate Patan Dhoka Pulchowk Nabil Bank Bhadrakali Singhadurbar 6 2 2 1 1 1 1 1 1 5 1 1 3 2 2 4 6 2 11 5
27
Kupondole-Thapathali edge Kupondole Tripureswor Maitighar Thapathali
28
Characteristic delay behavior of Thapathali node for Kupondole-Thapathali edge
29
Comparison of polynomial equation obtained with the real time test data collected on Bhadra 11 8:55 9:15 9:40 10:05 10:30 10:55 11:20 11:45 Time starting from 8:55 am to 11:45 am
30
Total Weight on edge
31
Implementation CCTV Cameras Web Server Image Processing Server CCTV Video Broadcasting Server Web Server
32
Thank You
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.