Download presentation
Published byBryce Dawson Modified over 9 years ago
1
Bellwork: Graph each line: 1. 3x – y = 6 2. Y = -1/2 x + 3 Y = -2
If f(x) = 3x2 – 9, find each. 4. f(-2) f(3) f(4a) Algebra II
2
Evaluating, Graphing, and Writing Piecewise Functions
Algebra II
3
Piecewise Functions A combination of equations each corresponding to a given domain. Algebra II
4
Example 1 f(x)= { 2x2 – 2 if x < 1 x + 4 if x ≥ 1 Evaluate each.
= (3) + 4 = 7 = 2(-4)2 – 2 = 2(16) – 2 = 30 = (1) + 4 = 5 Algebra II
5
Example 2 x − 1 if x ≤ -1 f(x)= { (x − 3)2 if x > -1 Evaluate each.
= (-3) − 1 = -4 = (-1) − 1 = -2 = ((2) – 3)2 = (-1)2 = 1 Algebra II
6
Example 3 g(x)= { 3x – 2 if x < -3 4 if -3 ≤ x < 5
Evaluate each. 1. g(5) 2. g(-2) 3. g(-8) = 2(5)2 – 3 = 2(25) – 3 = 47 = 4 = 3(-8) – 2 = -24 – 2 = -26 Algebra II
7
Find each. f(½) f(2) f(-5) -3/2 9 -10 4. g(½) 5. g(0) 6. g(-1) 3 2
2x if x < -2 x – if -2 ≤ x < 2 2x if x ≥ 2 f(x)= { x + 3 if x < ½ 2x – 1 if x ≥ ½ g(x)= { Evaluate each piecewise function for the given values. f(½) f(2) f(-5) -3/2 9 -10 4. g(½) 5. g(0) 6. g(-1) 3 2 Algebra II
8
Graphing: Example 1 f(x)= { x – 3 if x < 2 -½x + 1 if x ≥ 2
Graph the piecewise function: f(x)= { x – 3 if x < 2 -½x + 1 if x ≥ 2 x – 3 if x < 2 -½x + 1 if x ≥ 2 Algebra II
9
Graphing: Example 2 f(x)= { 3x + 1 if x ≤ -1 x + 2 if x > -1
Graph the piecewise function: f(x)= { 3x + 1 if x ≤ -1 x + 2 if x > -1 3x + 1 if x ≤ -1 x + 2 if x > -1 Algebra II
10
Graphing: Example 3 f(x)= { -2x if x < -2 ⅔x – 1 if x ≥ -2
Graph the piecewise function: f(x)= { -2x if x < -2 ⅔x – 1 if x ≥ -2 -2x if x < -2 ⅔x – 1 if x ≥ -2 Algebra II
11
Graphing: Example 4 f(x)= { -3 if x < 0 -x – 1 if x ≥ 0
Graph the piecewise function: f(x)= { if x < 0 -x – 1 if x ≥ 0 if x < 0 -x – 1 if x ≥ 0 Algebra II
12
Graphing: Example 5 f(x)= { Graph the piecewise function:
2x – 1 if x < -2 if -2 ≤ x ≤ 2 -¼x if x > 2 2x – 1 if x < -2 if -2 ≤ x ≤ 2 -¼x if x > 2 Algebra II
13
Find each. Graph: Evaluate each given the piece-wise function: f(x)={
1/3x + 1 if x < -3 3x if -3 ≤ x < 2 if x > 2 4x if x < -3 3x – 2 if -3 ≤ x < 5 – if x ≥ 5 f(x)= { Algebra II
14
Writing a Piecewise Function
Write the equation for each piece of the function Write the domain for each piece of the function use inequality notation to represent the domain in each piece Algebra II
15
function that is graphed.
Example 1 Write the piecewise function that is graphed. (3 – 1) = -2 = -2 (-3 + 2) y – 1 = -2(x + 2) y = 2x – 3 (-5 + 4) = -1 (2 + 1) y + 4 = -⅓(x + 1) y = -⅓x – 13/3 f(x) = { 2x – 3 if x ≤ -1 -⅓x – 13/3 if x > -1 Algebra II
16
function that is graphed.
Example 2 Write the piecewise function that is graphed. (6 – 5) = 1 (1 + 4) y – 6 = ⅕(x – 1) y = ⅕x + 29/5 (0 + 1) = 1 = 1 (3 – 2) y – 0 = 1(x + 3) y = x – 3 f(x) = { ⅕x + 29/5 if x < 1 x – 3 if x ≥ 1 Algebra II
17
function that is graphed.
Example 3 Write the piecewise function that is graphed. (2 + 1) = 3 = -1 (-3 - 0) y + 1 = -1(x + 0) y = -x – 1 (2 – 0) = 2 = 2 (1 – 0) y – 0 = 2(x + 0) y = 2x f(x) = { -x – 1 if x ≤ 0 2x if x > 0 Algebra II
18
function that is graphed.
Example 4 Write the piecewise function that is graphed. (5 – 3) = 2 = 1 (-3 + 5) y – 5 = 1(x + 3) y = x + 8 Slope is 0 horizontal line (1 – 0) = 1 = -½ (1 – 3) y = 3 y – 0 = -½(x – 3) y = -½x + 3/2 f(x) = { x + 8 if x < -3 if -3 ≤ x < 1 -½x + 3/2 if x ≥ 1 Algebra II
19
Closure: Graph the piece-wise function:
Write a piece-wise function for this graph: f(x) = { x + 8 if x < -3 if -3 ≤ x < 1 -½x + 3/2 if x ≥ 1 Algebra II
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.