Presentation is loading. Please wait.

Presentation is loading. Please wait.

Bellwork: Graph each line: 1. 3x – y = 6 2. Y = -1/2 x + 3 Y = -2

Similar presentations


Presentation on theme: "Bellwork: Graph each line: 1. 3x – y = 6 2. Y = -1/2 x + 3 Y = -2"— Presentation transcript:

1 Bellwork: Graph each line: 1. 3x – y = 6 2. Y = -1/2 x + 3 Y = -2
If f(x) = 3x2 – 9, find each. 4. f(-2) f(3) f(4a) Algebra II

2 Evaluating, Graphing, and Writing Piecewise Functions
Algebra II

3 Piecewise Functions A combination of equations each corresponding to a given domain. Algebra II

4 Example 1 f(x)= { 2x2 – 2 if x < 1 x + 4 if x ≥ 1 Evaluate each.
= (3) + 4 = 7 = 2(-4)2 – 2 = 2(16) – 2 = 30 = (1) + 4 = 5 Algebra II

5 Example 2 x − 1 if x ≤ -1 f(x)= { (x − 3)2 if x > -1 Evaluate each.
= (-3) − 1 = -4 = (-1) − 1 = -2 = ((2) – 3)2 = (-1)2 = 1 Algebra II

6 Example 3 g(x)= { 3x – 2 if x < -3 4 if -3 ≤ x < 5
Evaluate each. 1. g(5) 2. g(-2) 3. g(-8) = 2(5)2 – 3 = 2(25) – 3 = 47 = 4 = 3(-8) – 2 = -24 – 2 = -26 Algebra II

7 Find each. f(½) f(2) f(-5) -3/2 9 -10 4. g(½) 5. g(0) 6. g(-1) 3 2
2x if x < -2 x – if -2 ≤ x < 2 2x if x ≥ 2 f(x)= { x + 3 if x < ½ 2x – 1 if x ≥ ½ g(x)= { Evaluate each piecewise function for the given values. f(½) f(2) f(-5) -3/2 9 -10 4. g(½) 5. g(0) 6. g(-1) 3 2 Algebra II

8 Graphing: Example 1 f(x)= { x – 3 if x < 2 -½x + 1 if x ≥ 2
Graph the piecewise function: f(x)= { x – 3 if x < 2 -½x + 1 if x ≥ 2 x – 3 if x < 2 -½x + 1 if x ≥ 2 Algebra II

9 Graphing: Example 2 f(x)= { 3x + 1 if x ≤ -1 x + 2 if x > -1
Graph the piecewise function: f(x)= { 3x + 1 if x ≤ -1 x + 2 if x > -1 3x + 1 if x ≤ -1 x + 2 if x > -1 Algebra II

10 Graphing: Example 3 f(x)= { -2x if x < -2 ⅔x – 1 if x ≥ -2
Graph the piecewise function: f(x)= { -2x if x < -2 ⅔x – 1 if x ≥ -2 -2x if x < -2 ⅔x – 1 if x ≥ -2 Algebra II

11 Graphing: Example 4 f(x)= { -3 if x < 0 -x – 1 if x ≥ 0
Graph the piecewise function: f(x)= { if x < 0 -x – 1 if x ≥ 0 if x < 0 -x – 1 if x ≥ 0 Algebra II

12 Graphing: Example 5 f(x)= { Graph the piecewise function:
2x – 1 if x < -2 if -2 ≤ x ≤ 2 -¼x if x > 2 2x – 1 if x < -2 if -2 ≤ x ≤ 2 -¼x if x > 2 Algebra II

13 Find each. Graph: Evaluate each given the piece-wise function: f(x)={
1/3x + 1 if x < -3 3x if -3 ≤ x < 2 if x > 2 4x if x < -3 3x – 2 if -3 ≤ x < 5 – if x ≥ 5 f(x)= { Algebra II

14 Writing a Piecewise Function
Write the equation for each piece of the function Write the domain for each piece of the function use inequality notation to represent the domain in each piece Algebra II

15 function that is graphed.
Example 1 Write the piecewise function that is graphed. (3 – 1) = -2 = -2 (-3 + 2) y – 1 = -2(x + 2) y = 2x – 3 (-5 + 4) = -1 (2 + 1) y + 4 = -⅓(x + 1) y = -⅓x – 13/3 f(x) = { 2x – 3 if x ≤ -1 -⅓x – 13/3 if x > -1 Algebra II

16 function that is graphed.
Example 2 Write the piecewise function that is graphed. (6 – 5) = 1 (1 + 4) y – 6 = ⅕(x – 1) y = ⅕x + 29/5 (0 + 1) = 1 = 1 (3 – 2) y – 0 = 1(x + 3) y = x – 3 f(x) = { ⅕x + 29/5 if x < 1 x – 3 if x ≥ 1 Algebra II

17 function that is graphed.
Example 3 Write the piecewise function that is graphed. (2 + 1) = 3 = -1 (-3 - 0) y + 1 = -1(x + 0) y = -x – 1 (2 – 0) = 2 = 2 (1 – 0) y – 0 = 2(x + 0) y = 2x f(x) = { -x – 1 if x ≤ 0 2x if x > 0 Algebra II

18 function that is graphed.
Example 4 Write the piecewise function that is graphed. (5 – 3) = 2 = 1 (-3 + 5) y – 5 = 1(x + 3) y = x + 8 Slope is 0 horizontal line (1 – 0) = 1 = -½ (1 – 3) y = 3 y – 0 = -½(x – 3) y = -½x + 3/2 f(x) = { x + 8 if x < -3 if -3 ≤ x < 1 -½x + 3/2 if x ≥ 1 Algebra II

19 Closure: Graph the piece-wise function:
Write a piece-wise function for this graph: f(x) = { x + 8 if x < -3 if -3 ≤ x < 1 -½x + 3/2 if x ≥ 1 Algebra II


Download ppt "Bellwork: Graph each line: 1. 3x – y = 6 2. Y = -1/2 x + 3 Y = -2"

Similar presentations


Ads by Google