Download presentation
Presentation is loading. Please wait.
Published byErnest Ward Modified over 9 years ago
1
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge ILC software tools meeting
2
“Vinča“ I nstitute of N uclear S ciences, Belgrade AGH University, Cracow I nstitute of N uclear P hysics, Cracow Jagellonian University, Cracow University of Colorado DESY J oint I nstitute N uclear R esearch Dubna N ational C enter of P article & HEP Minsk Brookhaven NY Prague Acad. of Science I nstitute HEP Protvino Tel Aviv University FCAL Collaboration Goals : design and construction of Luminosity detector Beam monitor Photons calorimeter Collaboration High precision design Cambridge2006 Tel Aviv University HEP Experimental Group
3
Collaboration High precision design Cambridge2006 Tel Aviv University HEP Experimental Group Detector simulation: Geant-3, Geant-4 (and Mokka) next step: G3/G4 comparison Physics: BHWIDE, CIRCE, GUNIEA-PIG, WHIZARD High statistics / Fast detector simulation Electronics simulation: noise, dead cells, digitization (Geant-3 + Fortran code) FCAL simulation tools
4
BeamCal Detection of electrons/photons at low angle Shielding the inner detector Beam diagnostics from beamstrahlung electrons/positron pairs. Collaboration High precision design Cambridge2006 Tel Aviv University HEP Experimental Group
5
Beam diagnostics : BS Pairs Observables (examples): – total energy – first radial moment – left/right, up/down, – forward/backward asymmetries Observables Δ BeamPar Taylor Matrix nom = + * 1 st order Taylor-Exp. Solved by matrix inversion (Moore-Penrose Inverse) Being tested also for the 20mrad case Collaboration High precision design Cambridge2006 Tel Aviv University HEP Experimental Group detector: realistic segmentation, ideal resolution, bunch by bunch resolution Christian Grah, DESY-Zuethen
6
Particle identification in the BeamCal The Physics: SUSY particles production Signature: missing energy The Background: two photons event Signature: missing energy (if electrons are not tagged) Excellent electron identification is needed down to as small angle as possible Collaboration High precision design Cambridge2006 Tel Aviv University HEP Experimental Group
7
Electron detection in the BeamCal 4 mm 10 mm N rings 20 N cells 1660 N channels 49800 N rings 8 N cells 264 N channels 7 920 Low BG ( ~ 0°)High BG ( ~ 90°) 5mm 8mm 10mm 5mm 8mm 10mm Inefficiency to identify High BG ( ~ 90°) Low BG ( ~ 0°) Lost particles for R < 55 mm electrons 200 GeV Collaboration High precision design Cambridge2006 Tel Aviv University HEP Experimental Group
8
Collaboration High precision design Cambridge2006 Tel Aviv University HEP Experimental Group Electron detection for different beam parameters
9
Collaboration High precision design X-angle & magnetic field Tel Aviv University HEP Experimental Group Cambridge2006
10
2 mrad Headon Distribution of BeamStrahlung pairs Collaboration High precision design Cambridge2006 Tel Aviv University HEP Experimental Group Christian Grah, DESY-Zuethen
11
20 mrad, DID 20 mrad, DID – extended R max 20mrad crossing angle and DID field Collaboration High precision design Cambridge2006 Tel Aviv University HEP Experimental Group
12
20 mrad, DID 20 mrad, anti DID Anti DID Collaboration High precision design Cambridge2006 Tel Aviv University HEP Experimental Group
13
BeamCal Geant4 Simulation Need precise simulation for showering/realistic bfield map. Includes: –flexible geometry (beam crossing angle, layer thickness, variable segmentation, calorimeter tilt) – simplified DiD/antiDiD magnetic field – input – GP generated e+e- pairs – output – root tree with energy distribution in segments – 1 BX ~ 200min @ 2.4 GHz CPU Shower visualization Energy/Layer distribution A.Sapronov Collaboration High precision design Cambridge2006 Tel Aviv University HEP Experimental Group
14
B field Map All layersLayer 8 Energy deposited in the sensors of BeamCal. Collaboration High precision design Cambridge2006 Tel Aviv University HEP Experimental Group
15
LumiCal Precise measurement of the luminosity by using Bhabha events Extend coverage of the ILC detector Collaboration High precision design Cambridge2006 Tel Aviv University HEP Experimental Group
16
Collaboration High precision design No Yes Counting Bhabha events MaxMin ~25 cm~10 cmR 80 mrad33 mradθ Tel Aviv University HEP Experimental Group Events (rad) Energy (GeV) Events Cambridge2006
17
X- angle background Collaboration High precision design Christian Grah, DESY-Zuethen Beamstrahlung pair background 250 GeV Tel Aviv University HEP Experimental Group 20 mrad, DID Cambridge2006
18
Collaboration High precision design Cambridge2006 Tel Aviv University HEP Experimental Group x [cm] Simulation of e + e - e + e – l + l - (l = e, μ, τ): WHIZARD Bhabha scattering: BHLUMI Detector: Geant-3 Energy [Gev] [deg] LUMICAL BEAMCAL LUMICAL BEAMCAL x [cm] Y [CM] Four-lepton processes M.Pandurović / I. Božović-Jelisavčić, Belgrade signalBackground
19
Collaboration High precision design Cambridge2006 Tel Aviv University HEP Experimental Group 8-bit ADCanalog (3.07±0.01)×10 -5 (3.11±0.01)×10 -5 σ(θ) [rad] (2.3±0.3)×10 -5 (2.1±0.3)×10 -5 Δθ/θ (1.4±0.1)×10 -3 σ(φ) [rad] Strip design - signal digitization Bogdan Pawlik, Cracow Geant-3 + Fortran code
20
Collaboration High precision design Fast Simulation Tel Aviv University HEP Experimental Group Cambridge2006
21
N 1 : Reconstructed and generated in acceptance region. N 2 : Generated in acceptance region but reconstructed outside. N 3 : Generated outside acceptance region but reconstructed inside. Collaboration High precision design Luminosity precision determination Tel Aviv University HEP Experimental Group Cambridge2006 Based on BHWIDE
22
Fast detector simulation – bias Changing the bias with a fixed resolution. Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge2006
23
Changing the detector resolution with no bias Collaboration High precision design Fast detector simulation – resolution Tel Aviv University HEP Experimental Group Cambridge2006
24
Collaboration High precision design (rad) X (cm) Y (cm) Events (rad) Events X (cm) Y (cm) Outgoing beam flat azimuthal distribution Tel Aviv University HEP Experimental Group Cambridge2006
25
Collaboration High precision design (rad) X (cm) Y (cm) Events Bhabha Scattering 20mrad X-angle Detector axis Tel Aviv University HEP Experimental Group Cambridge2006
26
Collaboration High precision design Headon, 14,20 mrad X-angle outgoing beam 14 mrad X-angle detector axis 20 mrad X-angle detector axis Tel Aviv University HEP Experimental Group Cambridge2006
27
Collaboration High precision design Headon, 14,20 mrad X-angle outgoing beam 14 mrad X-angle detector axis 20 mrad X-angle detector axis Tel Aviv University HEP Experimental Group Cambridge2006
28
Collaboration High precision design Tel Aviv University HEP Experimental Group N1N1 N2N2 N3N3 N4N4 X (cm) Y (cm) 20mrad X-angle Detector axis Cambridge2006
29
Collaboration High precision design Tel Aviv University HEP Experimental Group Events (up – down) Events (right – left) 1 mm beam shift 0.5 mm beam shift 0.3 mm beam shift “Beam position” Cambridge2006
30
Collaboration High precision design Tel Aviv University HEP Experimental Group 20mrad X-angle Detector axis Before correction after correction ΔL/L~10 -2 ΔL/L~10 -3 But !!!!!! This is assuming knowing in perfect precision many parameters Cambridge2006
31
Collaboration High precision design Present Understanding Tel Aviv University HEP Experimental Group Cambridge2006
32
Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge2006 LumiCal (bigger inner radius) BeamCal (bigger outer radius) 20 mrad LDC Detailed detector design recommendation
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.