Download presentation
Presentation is loading. Please wait.
Published byLesley Preston Modified over 9 years ago
1
Tbilisi, 10.07.2014 GGSWBS'14 Optimization for inverse modelling Ketevan Kasradze 1 Hendrik Elbern 1,2 kk@riu.uni-koeln.de he@riu.uni-koeln.dekk@riu.uni-koeln.dehe@riu.uni-koeln.de and the Chemical Data Assimilation group of RIU 1 Rhenish Institute for Environmental Research at the University of Cologne, Germany 2 Institute for Energy and Climate Research -Troposphere, Germany
2
Tbilisi, 10.07.2014 GGSWBS'14 Atmospheric layers 3/18
3
Tbilisi, 10.07.2014 GGSWBS'14 Atmospheric layers 3/18 SACADA
4
Tbilisi, 10.07.2014 GGSWBS'14 SACADA assimilation-system Background Meteorological ECMWF analyses Trace gas observations Analysis SACADA PREP DWD GME CTM CTMad Diffusion L-BFGS
5
Tbilisi, 10.07.2014 GGSWBS'14 Horizontal GME Grid 9/18 ~147km between the grid points 23 042 grid points per Model layer
6
Tbilisi, 10.07.2014 GGSWBS'14 Additional refinement troposphere/lower stratosphere SACADA Vertical Grid 54 layer CRISTA-NF MLS
7
Tbilisi, 10.07.2014 GGSWBS'14 HN O 3 4.11.2005 ~137hPa 12 Uhr UTC MLS 15
8
Tbilisi, 10.07.2014 GGSWBS'14 SCOUT-O3 campaign Stratospheric-Climate Links with Emphasis on the UTLS - O3 November-December 2005 AMMA- campaign African Monsoon Multidisciplinary Analyses 29.07.2006 -17.08.2006 12/18
9
Tbilisi, 10.07.2014 GGSWBS'14 Cost function Vector of observations Observation error covariance matrix Projection operator Background Model operator SACADA assimilation-system 4D-Var Background error covariance matrix BECM ~ 10 12 ~ 80 Terrabyte
10
Tbilisi, 10.07.2014 GGSWBS'14 Gradient Adjoint Model SACADA assimilation-system 4D-Var
11
Tbilisi, 10.07.2014 GGSWBS'14 Quasi-Newton method L-BFGS SACADA assimilation-system 4D-Var
12
Tbilisi, 10.07.2014 GGSWBS'14 Quasi-Newton method L-BFGS Background error covariance matrix BECM ~ 10 12 ~ 80 Terrabyte SACADA assimilation-system 4D-Var
13
Tbilisi, 10.07.2014 GGSWBS'14 Radius of Influence ((de-)correlation length): Extending the information from an observation location Textbook: horizontal influence radius L around a measurement site, to be based on a priori statistical assessments L vertical cut L Horizontal structure function, to be stored as a column of the forecast error covariance matrix diffusion operator construction For atmospheric chemistry covariance modelling the diffusion approach is advocated: localisation intrinsically performed sharp gradients easily feasible matrix square roots for preconditioning straightforward to calculate; no inversion needed Background error covariance matrix formulation
14
Tbilisi, 10.07.2014 GGSWBS'14 Isopleths of the cost function and transformed cost function and minimisation steps Minimisation by mere gradients, quasi-Newon method L-BFGS (Large dimensional Broyden Fletcher Goldfarb Shanno), and preconditioned (transformed) L-BFGS application concentration species 1 transformed species 1 concentration species 2 transformed species 2
15
Tbilisi, 10.07.2014 GGSWBS'14 Solution: Diffusion Approach Transformation of cost-function: => Inverse of B and B -1/2 are not needed, if x b = 1. guess. 2 outstanding problems: 1.With linear estimation: How to treat the background error covariance matrix B (O(10 12 ))? 2.How can this be treated for preconditioning? (need B -1, B 1/2, B -1/2 ) With variational methods: minimisation procedure Background error covariance matrix formulation
16
Tbilisi, 10.07.2014 GGSWBS'14 Background error covariance matrix formulation Background
17
Tbilisi, 10.07.2014 GGSWBS'14 Background error covariance matrix formulation Background Observation: 3 ppm Ozone
18
Tbilisi, 10.07.2014 GGSWBS'14 Analysis (B diagonal) Background error covariance matrix formulation Background Observation: 3 ppm Ozone
19
Tbilisi, 10.07.2014 GGSWBS'14 Background error covariance matrix formulation Background Observation: 3 ppm Ozone
20
Tbilisi, 10.07.2014 GGSWBS'14 Background error covariance matrix formulation Observation: 3 ppm Ozone Analysis increment isotropic correlation The increment in initial values is spread out to neighbouring grid-points depending on the correlations that are known / assumed. Background
21
Tbilisi, 10.07.2014 GGSWBS'14 Assumption: Strong correlation along isolines of Potential Vorticity Enhancement of diffusion flow-dependent BECM Diffusion can be generalised to account for inhomogeneous and anisotropic correlations: Stratospheric case Background error covariance matrix formulation use PV field for anisotropic correlation modelling
22
Tbilisi, 10.07.2014 GGSWBS'14 Background Observation: 3 ppm Ozone Background error covariance matrix formulation
23
Tbilisi, 10.07.2014 GGSWBS'14 Background Observation: 3 ppm Ozone Analysis increment Background error covariance matrix formulation
24
Tbilisi, 10.07.2014 GGSWBS'14 Quasi-Newton method L-BFGS Adjoint Model SACADA assimilation-system 4D-Var
25
Tbilisi, 10.07.2014 GGSWBS'14 Construction of the adjoint code (3 different possible pathways) forward model (forward differential equation) algorithm (solver) code backward model (backward differential equation) adjoint algorithm (adjoint solver) adjoint code
26
Tbilisi, 10.07.2014 GGSWBS'14 Adjoint model A numerical model integration over a time interval [t 0 ; t i ] Accordingly, the tangent linear of this sequence of model operators is given by Thus, the adjoint model operator Mi propagates the gradient of the cost function with respect to xi backwards in time, to deliver the gradient of the cost function with respect to x0.
27
Tbilisi, 10.07.2014 GGSWBS'14 Adjoint model example
28
Tbilisi, 10.07.2014 GGSWBS'14 Adjoint model example
29
Tbilisi, 10.07.2014 GGSWBS'14 Quasi-Newton method L-BFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm SACADA assimilation-system 4D-Var
30
Tbilisi, 10.07.2014 GGSWBS'14 Gradient of the cost function h Hessian of the cost function
31
Tbilisi, 10.07.2014 GGSWBS'14 BFGS algorithm (2) From an initial guess x 0 a nd an approximate Hessian matrix H 0 the following steps are repeated as x k converges to the solution. 1.Obtain a direction s k by solving: 2.Perform a line search to find an acceptable step size in the direction found in the first step, then update 3.Set 4. 5. Convergence can be checked by observing the norm of the gradient,.
32
Tbilisi, 10.07.2014 GGSWBS'14 BFGS example with MATLAB
33
Tbilisi, 10.07.2014 GGSWBS'14 BFGS example with MATLAB
34
Tbilisi, 10.07.2014 GGSWBS'14 BFGS example with MATLAB
35
Tbilisi, 10.07.2014 GGSWBS'14 BFGS example with MATLAB
36
Tbilisi, 10.07.2014 GGSWBS'14 BFGS example with MATLAB
37
Tbilisi, 10.07.2014 GGSWBS'14 BFGS example with MATLAB
38
Tbilisi, 10.07.2014 GGSWBS'14 BFGS example with MATLAB
39
Tbilisi, 10.07.2014 GGSWBS'14 BFGS example with MATLAB it= 40 f=1.497581e-13 ||g||=1.726061e-05 sig=1.200 step=BFGS it= 41 f=5.990317e-15 ||g||=3.452127e-06 Successful termination with ||g||<1.000000e-08*max(1,||g0||):
40
Tbilisi, 10.07.2014 GGSWBS'14 Thank you for your attention! გმადლობთ ყურადღებისათვის ! Vielen Dank für Ihre Aufmerksamkeit!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.