Download presentation
Presentation is loading. Please wait.
Published byRandell Bradford Modified over 9 years ago
1
Nonlinear Dynamics in Mesoscopic Chemical Systems Zhonghuai Hou ( 侯中怀 ) Department of Chemical Physics Hefei National Lab of Physical Science at Microscale University of Science & Technology of China
2
Genetic Toggle Switch In E. Coli Nature 2000 Two or more stable states under same external constraints Reactive/Inactive bistabe CO+O2 on Pt filed tip PRL1999 Travelling/Target/Spiral/Soliton … waves PEEM Image CO Oxidation on Pt PRL 1995 Calcium Spiral Wave in Cardiac Tissues Nature 1998 Temporally Periodic Variations of Concentrations Rate Oscillation CO+O2 Nano- particle Catal.Today 2003 Synthetic transcriptional oscillator (Repressilator) Nature 2002 Stationary spatial structures in reaction-diffusion systems Cellular Pattern CO Oxidation on Pt PRL 2001 Turing Pattern BZ Reaction System PNAS 2003 Oscillation Multistability Patterns Waves Chaos Nonlinear Chemical Dynamics far-from equilibrium, self-organized, complex, spatio-temporal structures Aperiodic/Initial condition sensitivity/strange attractor … Strange Attractor The Lorenz System Chemical turbulence CO+O2 on Pt Surface Science 2001 Collective behavior involving many molecular units
3
Sub-cellular reactions - gene expression - ion-channel gating - calcium signaling … Heterogeneous catalysis - field emitter tips - nanostructured composite surface - small metal particles Mesoscopic Reaction Systems N, V (Small) Molecular Fluctuation Nonlinear Chemical Dynamics ?
4
Noise Induced Pattern Transition Z.Hou, et al., PRL 81, 2854 (1998) Disorder sustained spiral waves Z.Hou, et al., PRL 89, 280601 (2002) Noise/Disorder Noise and disorder play constructive roles in nonlinear dynamical systems Taming Chaos by Topological Disorder F. Qi, Z.Hou, H. Xin, PRL 91, 064102 (2003)
5
Stochastic Chemical Kinetics chemical reactions are essentially stochastic, discrete processes Discrete Brownian Motion of X : Prob. Evolution: Master equation Sample Trajectory: Langevin equation stochastic state variable probability distribution
6
Chemical Langevin equation (CLE) N Species, M reaction channels, well-stirred in V Reaction j: Rate: Molecular fluctuation (Internal noise) Deterministic kinetics for Each channel contributes independently to internal noise: Fast numerical simulation
7
The Brusselator Deterministic bifurcation Fixed Point: Hopf bifurcation:
8
Noise Induced Oscillation Stochastic dynamics FFT
9
Optimal System Size Optimal System size for mesoscopic chemical oscillation Z. Hou, H. Xin. ChemPhysChem 5, 407(2004)
10
Seems to be common … Internal Noise Stochastic Resonance in a Circadian Clock System J.Chem.Phys. 119, 11508(2003) Optimal Particle Size for Rate Oscillation in CO Oxidation on Nanometer-Sized Palladium(Pd) Particles J.Phys.Chem.B 108, 17796(2004) Internal Noise Stochastic Resonance of synthetic gene network Chem.Phys.Lett. 401,307(2005) Effects of Internal Noise for rate oscillations during CO oxidation on platinum(Pt) surfaces J.Chem.Phys. 122, 134708(2005) System size bi-resonance for intracellular calcium signaling ChemPhysChem 5, 1041(2004) Double-System-Size resonance for spiking activity of coupled HH neurons ChemPhysChem 5, 1602(2004)
11
Analytical study Stochastic Normal Form
12
Analytical study Stochastic Averaging
13
Analytical study Probability distribution of r Fokker- Planck equation Stationary distribution Most probable radius Noise induced oscillation
14
Analytical study Auto-correlation function
15
Analytical study Power spectrum and SNR Optimal system size:
16
Analytical study Universal near HB System Dependent Internal Noise Coherent Resonance for Mesoscopic Chemical oscillations: a Fundamental Study. Z. Hou, … ChemPhysChem 7, 1520(2006)
17
Summary In mesoscopic chemical systems, molecular fluctuations can induce oscillation even outside the deterministic oscillatory region Optimal system size exists, where the noise- induced oscillation shows the best performance, characterized by a maximal SNR, a trade off between strength and regularity Based on stochastic normal form, analytical studies show rather good agreements with the simulation results, uncovering the mechanism of NIO and OSS
18
Further questions
19
Acknowledgements Supported by: National science foundation (NSF) Fok Yin Dong education foundation Thank you
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.