Download presentation
Presentation is loading. Please wait.
Published byVincent Chapman Modified over 9 years ago
1
Political Redistricting By Saad Padela
2
The American Political System Legislative bicameralism Number of seats in lower house is proportional to population Single-member districts First-past-the-post (or plurality) voting “One man, one vote”
5
The Case for Redistricting New Census data every 10 years # of Representatives = α * Population 0 < α < 1 # of Representatives = # of Districts Population rises => More seats Districts must be redrawn
6
Gerrymandering
8
Types of Gerrymandering Partisan Democrats vs. Republicans Bipartisan Incumbents vs. Challengers Racial and ethnic Majority vs. Minority groups “Benign” In favor of minority groups
9
Gerrymandering Strategies Different election objectives To win a single district To win a majority of many districts Partisan Own votes Win districts by the smallest margin possible Minimize wasted votes in losing districts Opponent's votes Fragment them into different districts Concentrate them into a single district
10
Gerrymandering Strategies Bipartisan Maximize number of “safe” districts Racial and ethnic Fragment supporters of minority candidates “Benign” Maximize chances of minority representation by concentrating them into single districts
11
A Linear Programming Formulation? Easy to see Small scholarly literature Those who are involved in it like to keep their work secret
12
Detection of Gerrymandering A rich literature Hess, S.W. 1965. “Nonpartisan Political Redistricting by Computer.” Operations Research, 13 (6), 998-1006.
13
Good Districts are... Equally populous Contiguous Compact
15
Equal population Easy to write as a constraint
16
Contiguity Highly intuitive Sometimes tedious to code
17
Compactness Ambiguous Difficult to measure Niemi et al. 1990. “Measuring Compactness and the Role of a Compactness Standard in a Test for Partisan and Racial Gerrymandering.” The Journal of Politics, 52 (4), 1155-1181. “A Typology of Compactness Measures” (Table 1) Dispersion Perimeter Population
18
A Typology of Compactness Measures: Dispersion District Area Compared with Area of Compact Figure Dis7 = ratio of the district area to the area of the minimum circumscribing circle Dis8 = ratio of the district area to the area of the minimum circumscribing regular hexagon Dis9 = ratio of the district area to the area of the minimum convex figure that completely contains the district Dis10 = ratio of the district area to the area of the circle with diameter equal to the district's longest axis
19
A Typology of Compactness Measures: Dispersion District Area Compared with Area of Compact Figure Dis7 = ratio of the district area to the area of the minimum circumscribing circle Dis8 = ratio of the district area to the area of the minimum circumscribing regular hexagon Dis9 = ratio of the district area to the area of the minimum convex figure that completely contains the district Dis10 = ratio of the district area to the area of the circle with diameter equal to the district's longest axis
20
A Typology of Compactness Measures: Dispersion Moment-of-inertia Dis11 = the variance of the distances from all points in the district to the district's areal center for gravity, adjusted to range from 0 to 1 Dis12 = average distance from the district's areal center to the point on the district perimeter reached by a set of equally spaced radial lines
21
A Typology of Compactness Measures: Perimeter Perimeter-only Per1 = sum of the district perimeters Perimeter-Area Comparisons Per2 = ratio of the district area to the area of a circle with the same perimeter Per4 = ratio of the perimeter of the district to the perimeter of a circle with an equal area Per5 = perimeter of a district as a percentage of the minimum perimeter enclosing that area
22
A Typology of Compactness Measures: Population District Population Compared with Population of Compact Figure Pop1 = ratio of the district population to the population of the minimum convex figure that completely contains the district Pop2 = ratio of the district population to the population in the minimum circumscribing circle Moment-of-inertia Pop3 = population moment of inertia, normalized from 0 to 1
23
Warehouse Location model Hess, S.W. 1965. “Nonpartisan Political Redistricting by Computer.” Operations Research, 13 (6), 998-1006. Garfinkel, R.S. And G.L. Nemhauser. 1970. “Optimal Political Districting By Implicit Enumeration techniques.” Management Science, 16 (8). Hojati, Mehran. 1996. “Optimal Political Districting.” Computers and Operations Research, 23 (12), 1147-1161. All these formulations have class NP
24
Heuristic Methods Hess, S.W. 1965. Garfinkel, R.S. And G.L. Nemhauser. 1970. Hojati, Mehran. 1996. Bozkaya, B., Erkut, E., and G. Laporte. 2003. “A tabu search heuristic and adaptive memory procedure for political districting.” European Journal of Operational Research, 144, 12-26.
25
Statistical physics? Chou, C. and S.P. Li. 2006. “Taming the Gerrymander – Statistical physics approach to Political Districting Problem.”
26
Criticisms of Compactness Altman, Micah. 1998. “Modeling the effect of mandatory district compactness on partisan gerrymanders.” Political Geography, 17 (8), 989-1012. Nonlinear effects – “electoral manipulation is much more severely constrained by high compactness than by moderate compactness” Context-dependent, and purely relative Asymmetrical effects on different political groups Compactness can also disadvantage geographically concentrated minorities
27
More Sophisticated Measures Niemi, R. and J. Deegan. 1978. “A Theory of Political Districting.” American Political Science Review, 72 (4), 1304-1323. Neutrality v% of the popular vote results in s% of the seats Range of Responsiveness % range of the total popular vote over which seats change from one party to the other Constant Swing Ratio rate at which a party gains seats per increment in votes Competitiveness % of districts in which the “normal” vote is close to 50%
28
Balinksi, Michel. 2008. “Fair Majority Voting (or How to Eliminate Gerrymandering).” The American Mathematical Monthly, 115 (2), 97- 114.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.