Download presentation
Presentation is loading. Please wait.
Published byBartholomew George Modified over 9 years ago
1
Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory A.Overview - types of organismal reproduction – asexual reproduction (typically by mitosis)
2
Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory A.Overview - types of organismal reproduction – sexual reproduction - conjugation in bacteria and some protists – gene exchange.
3
Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory A.Overview - types of organismal reproduction – sexual reproduction - fusion of specialized cells - gametes isogamyanisogamy oogamy Males and females Usually just two types, but sometimes a range (Chlamydamonas) Multiple mating types (‘sexes’)
4
Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory A.Overview - types of organismal reproduction – sexual reproduction - who produces these specialized reproductive cells? Hermaphrodism
5
Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory A.Overview - types of organismal reproduction – sexual reproduction - who produces these specialized reproductive cells? Monoecious plants Male and female flowers on the same individual plant
6
Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory A.Overview - types of organismal reproduction – sexual reproduction - who produces these specialized reproductive cells? Dioecious organisms: either male or female Photoby icmoore: http://www.wunderground.com/blog/icmoore/comment.html?entrynum=9&tstamp=&page=9 Sex changes: Sequential hermaphrodism Protandry: male then female Sexes permanent Progyny: female then male
7
Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory A.Overview B.Costs and Benefits of Asexual and Sexual Reproduction Asexual (copying existing genotype)Sexual (making new genotype) Benefits 1)No mate need 2)All genes transferred to every offspring 3)Offspring survival high in same environment
8
Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory A.Overview B.Costs and Benefits of Asexual and Sexual Reproduction Asexual (copying existing genotype)Sexual (making new genotype) Benefits 1)No mate need 2)All genes transferred to every offspring 3)Offspring survival high in same environment Costs 1)“Muller’s ratchet” 2)Mutation (rare) only source of variation 3)Offspring survival is “all or none” in a changing environment
9
Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory A.Overview B.Costs and Benefits of Asexual and Sexual Reproduction Asexual (copying existing genotype)Sexual (making new genotype) Benefits 1)No mate need 2)All genes transferred to every offspring 3)Offspring survival high in same environment Costs 1)May need to find/acquire a mate 2)Only ½ genes to each offspring 3)Offspring variable – many combo’s bad Costs 1)“Muller’s ratchet” 2)Mutation (rare) only source of variation 3)Offspring survival is “all or none” in a changing environment
10
Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory A.Overview B.Costs and Benefits of Asexual and Sexual Reproduction Asexual (copying existing genotype)Sexual (making new genotype) Benefits 1)No mate need 2)All genes transferred to every offspring 3)Offspring survival high in same environment Costs 1)May need to find/acquire a mate 2)Only ½ genes to each offspring 3)Offspring variable – many combo’s bad Costs 1)“Muller’s ratchet” 2)Mutation (rare) only source of variation 3)Offspring survival is “all or none” in a changing environment Benefits 1)Not all genes inherited – no ratchet 2)MUCH more variation produced 3)In a changing environment, producing variable offspring is very adaptive
11
Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory A.Overview B.Costs and Benefits of Asexual and Sexual Reproduction Asexual (copying existing genotype)Sexual (making new genotype) Benefits 1)No mate need 2)All genes transferred to every offspring 3)Offspring survival high in same environment Costs 1)May need to find/acquire a mate 2)Only ½ genes to each offspring 3)Offspring variable – many combo’s bad Costs 1)“Muller’s ratchet” 2)Mutation (rare) only source of variation 3)Offspring survival is “all or none” in a changing environment Benefits 1)Not all genes inherited – no ratchet 2)MUCH more variation produced 3)In a changing environment, producing variable offspring is very adaptive And because all environments on earth change, sex has been adaptive for all organisms. Even those that reproduce primarily by asexual means will reproduce sexually when the environment changes. This is an adaptive strategy – it produces lots of variation.
12
Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory A.Overview B.Costs and Benefits of Asexual and Sexual Reproduction C.Mixing Genomes 1. HOW? - problem: fusing body cells doubles genetic information over generations 2n 4n 8n
13
Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory A.Overview B.Costs and Benefits of Asexual and Sexual Reproduction C.Mixing Genomes 1. HOW? - problem: fusing body cells doubles genetic information over generations - solution: alternate fusion of cells with the reduction of genetic information 2n Reduction (meiosis) 1n Fusion (fertilization)
14
B.Mixing Genomes 1. HOW? 2. WHEN? Zygotic meiosis: Fungi, some protists
15
B.Mixing Genomes 1. HOW? 2. WHEN? Gametic meiosis: Animals
16
B.Mixing Genomes 1. HOW? 2. WHEN? Sporic meiosis: Plants, some fungi
17
II. Meiosis and the Chromosomal Theory A.Overview B.Costs and Benefits of Asexual and Sexual Reproduction C.Mixing Genomes D.Meiosis 1. Overview 2n 1n REDUCTIONDIVISION
18
II. Meiosis and the Chromosomal Theory A.Overview B.Costs and Benefits of Asexual and Sexual Reproduction C.Mixing Genomes D.Meiosis 1. Overview 2. Meiosis I (Reduction) There are four replicated chromosomes in the initial cell. Each chromosomes pairs with its homolog (that influences the same suite of traits), and pairs align on the metaphase plate. Pairs are separated in Anaphase I, and two cells, each with only two chromosomes, are produced. REDUCTION
19
II. Meiosis and the Chromosomal Theory A.Overview B.Costs and Benefits of Asexual and Sexual Reproduction C.Mixing Genomes D.Meiosis 1. Overview 2. Meiosis I (Reduction) 3. Transition 4. Meiosis II (Division) Each cell with two chromosomes divides; sister chromatids are separated. There is no change in ploidy in this cycle; haploid cells divide to produce haploid cells. DIVISION
20
5. Modifications in anisogamous and oogamous species
21
II. Meiosis and the Chromosomal Theory A.Overview B.Costs and Benefits of Asexual and Sexual Reproduction C.Mixing Genomes D.Meiosis E.Sexual Reproduction and Variation 1. Meiosis and Mendelian Heredity: The chromosomal theory of inheritance
22
D.Meiosis E.Sexual Reproduction and Variation 1. Meiosis and Mendelian Heredity: The chromosomal theory Saw homologous chromosomes separating (segregating). If they carried genes, this would explain Mendel’s first law. Theodor Boveri Walter Sutton Aa
23
D.Meiosis E.Sexual Reproduction and Variation 1. Meiosis and Mendelian Heredity: The chromosomal theory And if the way one pair of homologs separated had no effect on how others separated, then the movement of chromosomes would explain Mendel’s second law, also! They proposed that chromosomes carry the heredity information. Theodor Boveri Walter Sutton Aa Aa bBBb ABabAbaB OR
24
D.Meiosis E.Sexual Reproduction and Variation 1. Meiosis and Mendelian Heredity: The chromosomal theory 2. Solving Darwin’s Dilemma Independent Assortment produces an amazing amount of genetic variation. Consider an organism, 2n = 4, with two pairs of homologs. They can make 4 different gametes (long Blue, Short Red) (Long Blue, Short Blue), (Long Red, Short Red), (Long Red, Short blue). Gametes carry thousands of genes, so homologous chromosomes will not be identical over their entire length, even though they may be homozygous at particular loci. Well, the number of gametes can be calculated as 2 n or
25
D.Meiosis E.Sexual Reproduction and Variation 1. Meiosis and Mendelian Heredity: The chromosomal theory 2. Solving Darwin’s Dilemma Independent Assortment produces an amazing amount of genetic variation. Consider an organism with 2n = 6 (AaBbCc) …. There are 2 n = 8 different gamete types. ABCabc AbcabC aBCAbc AbCaBc
26
D.Meiosis E.Sexual Reproduction and Variation 1. Meiosis and Mendelian Heredity: The chromosomal theory 2. Solving Darwin’s Dilemma Independent Assortment produces an amazing amount of genetic variation. Consider an organism with 2n = 6 (AaBbCc) …. There are 2 n = 8 different gamete types. And humans, with 2n = 46?
27
D.Meiosis E.Sexual Reproduction and Variation 1. Meiosis and Mendelian Heredity: The chromosomal theory 2. Solving Darwin’s Dilemma Independent Assortment produces an amazing amount of genetic variation. Consider an organism with 2n = 6 (AaBbCc) …. There are 2 n = 8 different gamete types. And humans, with 2n = 46? 2 23 = ~ 8 million different types of gametes. And each can fertilize ONE of the ~ 8 million types of gametes of the mate… for a total 2 46 = ~70 trillion different chromosomal combinations possible in the offspring of a single pair of mating humans.
28
D.III. Meiosis E.Sexual Reproduction and Variation 1. Meiosis and Mendelian Heredity: The chromosomal theory 2. Solving Darwin’s Dilemma 3. Model of Evolution – circa 1905 Sources of VariationCauses of Change Independent Assortment VARIATION NATURAL SELECTION
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.