Download presentation
Presentation is loading. Please wait.
Published byJody Wilkerson Modified over 9 years ago
1
Programming & NGSS: Making the Shifts Missy Holzer mholzer@monmouth.com
2
Who are you? Where are you from? As a classroom science teacher, why do I want to visit your nature center, or learn about your specific program? (Hint: give me a science education sales pitch about your center or program!) Introductions
3
Where are we in the process? Practice #1: create a lesson Practice #2: review a lesson Practice #3: review another lesson Practice #4: review personal lessons Next Steps… what’s needed? Today’s Agenda
4
Where are we in the process?
5
Conceptual Shifts in the NGSS 1.K-12 Science Education Should Reflect the Interconnected Nature of Science as it is Practiced and Experienced in the Real World. 2.The Next Generation Science Standards are student performance expectations – NOT curriculum. 3.The Science Concepts in the NGSS Build Coherently from K–12. 4.The NGSS Focus on Deeper Understanding of Content as well as Application of Content. 5.Science and Engineering are Integrated in the NGSS, from K–12. 6.The NGSS are designed to prepare students for college, career, and citizenship. 7.The NGSS and Common Core State Standards (English Language Arts and Mathematics) are Aligned.
6
Shift from “Learning About” to “Figuring it Out” Lessons should be structured so that the work is organized around questions arising from phenomena, rather than topics sequentially pursued according to the traditional breakdown of lessons. The goal of investigations is to guide construction of explanatory models rather than simply testing hypothesis. Answers to science investigations are more than whether and how two variables are related, but need to help construct an explanatory account.
7
Students should see what they are working on as answering explanatory questions rather than learning the next assigned topic. A large part of the teachers’ role is to support the knowledge building aspects of practices, not just the procedural skills in doing an experiment. Extensive class focus needs to be devoted to argumentation and reaching consensus about ideas, rather than having textbooks and teachers present ideas to students.
8
SCIENCE EDUCATION WILL INVOLVE LESS: Rote memorization of facts and terminology Learning of ideas disconnected from questions about phenomena Teachers providing information to the whole class Teachers posing questions with only one right answer Students reading textbooks and answering questions at the end of the chapter Pre-planned outcome for “cookbook” laboratories or hands-on activities Worksheets Oversimplification of activities for students who are perceived to be less able to do science and engineering
9
Facts and terminology learned as needed while developing explanations and designing solutions supported by evidence-based arguments and reasoning. Systems thinking and modeling to explain phenomena and to give a context for the ideas to be learned Students conducting investigations, solving problems, and engaging in discussions with teachers’ guidance Students discussing open-ended questions that focus on the strength of the evidence used to generate claims Students reading multiple sources, including science-related magazine and journal articles and web-based resources; students developing summaries of information. Multiple investigations driven by students’ questions with a range of possible outcomes that collectively lead to a deep understanding of established core scientific ideas Student writing of journals, reports, posters, and media presentations that explain and argue Provision of supports so that all students can engage in sophisticated science and engineering practices SCIENCE EDUCATION WILL INVOLVE MORE:
10
What is new? Central role of scientific practices Organized around crosscutting concepts & core explanatory ideas Organized in learning progressions The NGSS are written as Performance Expectations NGSS will require “blended” contextual application of the three dimensions by students. Focus is on how and why as well as what Three Dimensions Intertwined
11
Scientific and Engineering Practices 1.Asking questions (for science) and defining problems (for engineering) 2.Developing and using models 3.Planning and carrying out investigations 4.Analyzing and interpreting data 5.Using mathematics and computational thinking 6.Constructing explanations (for science) and designing solutions (for engineering) 7.Engaging in argument from evidence 8.Obtaining, evaluating, and communicating information
12
1.Patterns 2.Cause and effect: Mechanism and explanation 3.Scale, proportion, and quantity 4.Systems and system models 5.Energy and matter: Flows, cycles, and conservation 6.Structure and function 7.Stability and change 12 Crosscutting Concepts
13
Life SciencePhysical Science LS1:From Molecules to Organisms: Structures and Processes LS2: Ecosystems: Interactions, Energy, and Dynamics LS3:Heredity: Inheritance and Variation of Traits LS4: Biological Evolution: Unity and Diversity PS1: Matter and Its Interactions PS2: Motion and Stability: Forces and Interactions PS3: Energy PS4: Waves and Their Applications in Technologies for Information Transfer Earth & Space ScienceEngineering & Technology ESS1: Earth’s Place in the Universe ESS2: Earth’s Systems ESS3: Earth and Human Activity ETS1: Engineering Design ETS2: Links Among Engineering, Technology, Science, and Society 13 Disciplinary Core Ideas
14
What Are Performance Expectations? Performance Expectations state what students should be able to do in order to demonstrate that they have met the standard, thus providing clear and specific targets for curriculum, instruction, and classroom assessment.
15
Performance Expectations Build Across Years 2-PS1-2. Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose 5-PS1-3. Make observations and measurements to identify materials based on their properties. MS-PS1-2. Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. Modified from Brian Reiser HS-PS1-1. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.
16
Who Should Meet Performance Expectations?
17
How Are Performance Expectations Structured? Performance Expectation Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Connections to Other science disciplines at this grade level Other DCIs for older and younger students Common Core State Standards in Mathematics and Language Arts
18
Reading a Performance Expectation
19
Instruction Builds Toward Performance
20
Three-Dimensional Learning How is “three-dimensional learning” both the biggest and the most essential shift in the NGSS? What does “three-dimensional learning” look like in lessons and/or units in science classrooms?
21
What is Three-Dimensional Learning? Practices Crosscutting Concepts Core Ideas Three-dimensional learning shifts the focus of the science classroom to environments where students use practices, disciplinary core ideas, and crosscutting concepts to make sense of phenomena and/or to design solutions to problems.
22
What Does Three-Dimensional Learning Look Like? Crosscutting Concepts Core Ideas Practices
23
Another Analogy Three-Dimensional Learning is like making a really great meal. The cooking techniques are the practices. The main ingredients are the core ideas. The herbs and spices are the crosscutting concepts.
24
Creating New Lessons Framework for K-12 Science Education & Next Generation Science Standards (including Appendices) NGSS Resources: –Evidence Statements – defines the performance expectations
25
Creating NGSS Congruent Lessons Phenomena of Interest: this may lead to crafting a coherent unit as opposed to a single lesson – What happened to all of the……? (How does an invasive species take over an ecosystem?) List all of the topics that will assist a student in learning about this phenomena What crosscutting concepts will assist a student in making a deeper connection to this topic? What science and engineering practices can a student employ in making a deeper connection to this topic? What could a lesson or set of activities look like to help this student answer the question?
26
Assessing lessons for NGSS congruency EQUiP rubric NJ Dept of Ed: NGSS Lesson/Unit Planning Tool NJDEP & ANJEE: Non-Formal Education Alignment Template NAAEE: Linking Environmental Literacy and the Next Generation Science Standards: A Tool for Mapping an Integrated Curriculum Project Learning Tree: PLT & NGSS: Built on a Common Foundation Remember that lessons need to be blended!
27
From Project Learning Tree: Adopt a Tree – What core ideas do you see? Evidence? – What practices do you see? Evidence? – What crosscutting concepts do you see? Evidence? – Are these 3 blended? Evidence? – What modifications could you make to ensure that this lesson is NGSS congruent? Evidence? Let’s explore a lesson for congruency
28
From Project Learning Tree: Water Wonders – What core ideas do you see? Evidence? – What practices do you see? Evidence? – What crosscutting concepts do you see? Evidence? – Are these 3 blended? Evidence? – What modifications could you make to ensure that this lesson is NGSS congruent? Evidence? Let’s explore a lesson for congruency
29
For your Programs Performance Expectation: Science and Engineering Practices Disciplinary Core IdeasCrosscutting Concepts NGSS Connections: The learning experiences in this program are helping the students develop their proficiencies necessary for the following NGSS components. Connections to Engineering, Technology, and Applications of Science Common Core State Standards Connections: ELA/Literacy: Mathematics:
30
From your programs! – What core ideas do you see? Evidence? – What practices do you see? Evidence? – What crosscutting concepts do you see? Evidence? – Are these 3 blended? Evidence? – What modifications could you make to ensure that this lesson is NGSS congruent? Evidence? Let’s explore a lesson for congruency
31
Where are we now? Thoughts? Comments? Concerns? Questions? 31 Missy Holzer mholzer@monmouth.com
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.