Download presentation
Presentation is loading. Please wait.
Published byHoratio Mason Modified over 8 years ago
1
Chapter 6 Time Value of Money and Accounting u In theory, the fair value or market price of assets and liabilities should equal the present value (PV) of future cash inflows or outflows u Examples: –the fair value of long-term Notes (or Bond) Receivables (or Payables) equals the PV of the principal plus the PV of future interests
2
Single Sum Problem u Future Valuet: PV=$1, n=5,i=10%; Table 1 0 1 2 3 4 5 I I I I I I $1 FV= $1.61051 u Present Value: fv=$1, n=5, i=10%; Table 2 0 1 2 3 4 5 I I I I I I PV=0.62092 $1
3
Ordinary Annuity u Future Value: R=$1, n=5,i=10%; Table 3 0 1 2 3 4 5 I I I I I I $1 $1 $1 $1 $1 FV-OA=$6.1051 $1 $1 $1 $1 $1 FV-OA=$6.1051 u Present Value: R=$1, n=5, i=10%; Table 4 0 1 2 3 4 5 0 1 2 3 4 5 I I I I I I I I I I I I PV-OA=$3.79079 $1 $1 $1 $1 $1 PV-OA=$3.79079 $1 $1 $1 $1 $1
4
Annuity Due u Future Value:R=$1;n=5;i=10%; No Table 0 1 2 3 4 5 0 1 2 3 4 5 I I I I I I I I I I I I $1 $1 $1 $1 $1 FV-AD=$6.71569 u Present Value: R=$1;n=5;i=10%; Table 5 0 1 2 3 4 5 0 1 2 3 4 5 I I I I I I I I I I I I PV-AD=$4.16986 $1 $1 $1 $1 $1
5
Deferred Annuity-- first rent occurs (y+1) periods from now Future Value Present Value R x (FVF-OA;n,i) R x [(PVF-OA;n+y,i) - (PVF-OA;y,i)] or R x [(PVF-OA;n,i) x (PVF;y,i)] or R x [(PVF-OA;n,i) x (PVF;y,i)] FV= 9.48717 PV=3.6577 e.g.., y=3; n=7; i=10%; R=$1 0 1 2 3 4 5 6 7 8 9 10 I I I I I I I I I I I $1 $1 $1 $1 $1 $1 $1 $1 $1 $1 $1 $1 $1 $1
6
Deferred Annuity Due-- first rent occurs y periods from now Future Value Present Value R x (FVF-AD;n,i) R x [(PVF-AD;n+y,i) - (PVF-AD;y,i)] or R x [(PVF-AD;n,i) x (PVF;y,i)] or R x [(PVF-AD;n,i) x (PVF;y,i)] FV = 10.4359 PV= 4.0235 e.g., y=3; n=7; i=10%; R=$1 0 1 2 3 4 5 6 7 8 9 10 I I I I I I I I I I I $1 $1 $1 $1 $1 $1 $1 $1 $1 $1 $1 $1 $1 $1
7
Deferred Annuity Exercise u What amount must be deposited at 10% on Jan.1 1995 to permit annual withdrawals of $500 each beginning on Jan. 1, 1999 and ending on Jan, 1 2002? u Time Diagram: 95 96 97 98 99 00 01 02 95 96 97 98 99 00 01 02 P=? $500 $500 $500 $500 P=? $500 $500 $500 $500
8
Solution to the Deferred Annuity Problem u An ordinary annuity of 4 rents deferred for 3 periods: PV=R x {(PVF-OA;7,10%) - (PVF-OA;3,10%)} =$500 x {4.86842 - 2.48685} = $1,190.79 =$500 x {4.86842 - 2.48685} = $1,190.79 or PV= R x (PVF-OA; 4,10%) x (PVF; 3,10%) =$500 x 3.16986 x 0.75131 = $1,190.79 =$500 x 3.16986 x 0.75131 = $1,190.79 u An annuity due of 4 rents deferred for 4 periods: PV=R x {(PVF-AD;8,10%) - (PVF-AD;4,10%)} =$500 x {5.86842 -3.48685} = $1,190.79 =$500 x {5.86842 -3.48685} = $1,190.79
9
Bond Valuation u On 1/1/95, X Co. issued $1,000, 8%, 3-year bonds with semiannual interest (market rate is 10%), what is the sale price of the bond? u Answer: PV of $1,000= $1,000 x (PVF;6,5%)=$747 PV of $1,000= $1,000 x (PVF;6,5%)=$747 PV of interest= $40 x (PVF-OA;6,5%)=$203 PV of interest= $40 x (PVF-OA;6,5%)=$203 PV of bonds= $747 + $203 = $950 PV of bonds= $747 + $203 = $950
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.