Presentation is loading. Please wait.

Presentation is loading. Please wait.

Learning Across the Expert-Novice Continuum: Cognition in the Geosciences Heather Petcovic Western Michigan University.

Similar presentations


Presentation on theme: "Learning Across the Expert-Novice Continuum: Cognition in the Geosciences Heather Petcovic Western Michigan University."— Presentation transcript:

1 Learning Across the Expert-Novice Continuum: Cognition in the Geosciences Heather Petcovic Western Michigan University

2 Heather Petcovic Kathleen Baker Caitlin Callahan Magdalena Wisniewska Julie Libarkin Zach Hambrick Sheldon Turner Nicole LaDue Tara Rench This work is supported by the National Science Foundation under Grants No. DRL-0815764 (PI Petcovic) and DRL-0815930 (PI Libarkin). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Joe Elkins Thank You: IUGFS

3 WHY STUDY EXPERT AND NOVICE GEOCOGNITION?

4 THE EMPIRICAL STUDY PURPOSE: examine how cognitive processes that underlie geological thinking and skills change from novice (undergraduate student) to expert (professional geoscientist) Geological Expertise Education & Experience Outdoor Comfort (Novelty Space) General Spatial Ability Outdoor (Field) Problem-Solving Domain Content Knowledge Working Memory Capacity

5 THE EMPIRICAL STUDY METHODS: (1) use existing or develop new cognitive tasks and measures (N=40); (2) recruit novice through expert volunteers to complete suite of lab and field tasks (N=29) ConstructTask or Measure ExperienceGeologic Experience Questionnaire (General and Mapping) Domain Content Knowledge Geoscience Concept Inventory (GCI+) General Spatial Ability Paper Folding, Form Board (ETS Toolkit); Space Relations Working Memory Capacity General – Matrix Span, Arrow Span Geologic – Block Diagram Test Outdoor ComfortNovelty Space Survey Field Problem- Solving Geologic Mapping Task Bedrock geologic map (scanned and digitized) GPS track during mapping (ArcGIS) Post-mapping Interview (and audio logs, N=8)

6 METHODS: LAB AND FIELD LABORATORY STUDY Adopt, adapt, or develop new tasks and measures Recruit subjects (N=40) –Novice = no geology experience –Intermediate = undergrad major or grad student –Expert = professional geoscientist Quantitative analysis FIELD STUDY Develop task/measure suite Recruit and select subjects (N=29) –Novice = undergrad major –Intermediate = grad or young professional –Expert = professional Data collection Aug 2009 –Rocky Mts., Montana –Cognitive tests –Intro to local rocks –Mapping task Data analysis

7 MEASURES: EXPERIENCE GEQ-G Geoscience education and experience survey –Demographics –Degrees and coursework –Assistantships –Teaching experience –Original research –Work experience Subject validation Scoring after AIPG certification GEQ-M Experience bedrock mapping –Coursework, internship, teaching, work experience, etc. –Related to bedrock mapping Have you completed an undergraduate degree in geology or earth science? If no, are you currently enrolled as an undergraduate student? Did you take a Field Geology methods course? Do you now hold or have you ever had a position to teach geological sciences at the college level? Have you ever been employed as a geoscientist or earth scientist (not including internships and/or assistantships while you were a student)?

8 RESULTS: EXPERIENCE FINDINGS GEQ-G –10 experts (>5) –9 intermediates (2.5-5) –10 novices (<2.5) GEQ-M –4 experts (>7) –13 intermediates (1-5) –12 novices (<1) Measures are significantly correlated s. rho =.79, p < 0.01

9 MEASURES: DOMAIN CONTENT KNOWLEDGE GCI+ Knowledge of geoscience content Modified from Libarkin and Andersons GCI 18 multiple choice 2 free-response Why does the Earth have a magnetic field? A.The Earth contains crust of different composition B.The Earth has a gravitational force of attraction C.The Earth contains moving metal liquid D.The Earth has an orbit around the sun E.The Earth does not have a magnetic field Draw a representation of the intersection between a bedding plane and a fault on the stereonet below.

10 RESULTS: DOMAIN CONTENT KNOWLEDGE FINDINGS GCI discriminates experts from novices GCI and GEQ-G: positive correlation GCI and GEQ-M: significant positive correlation Experts have higher domain content knowledge N=29 s. rho =.376, p =.04

11 MEASURES: GENERAL SPATIAL ABILITY SPATIAL-VISUAL ABILITY Mental rotation, recognizing patterns and shapes, vertical and horizontal frames of reference, mentally manipulating a surface or volume, spatial relationships Paper Folding, Form Board (ETS Toolkit); Space Relations

12 RESULTS: GENERAL (NON- GEOLOGIC) SPATIAL ABILITY FINDINGS: Higher scores than non- geologists Experts do NOT score higher than novices Does not decrease with age Positive corr. with GCI Do high spatial ability students self-select into geosciences? Spatial Ability Composite GCI N=29 r =.33

13 MEASURES: GENERAL SPATIAL WORKING MEMORY CAPACITY WORKING MEMORY CAPACITY Capacity to both store and process information in active memory Correlates with other measures of intelligence Arrow Span, Matrix Span Sets of 2-6 Briefly view letter Determine if inverted Briefly view arrow Was letter inverted? Y/N Draw arrow

14 RESULTS: GENERAL SPATIAL WORKING MEMORY CAPACITY FINDINGS: No better than non- geologist population Experts do NOT perform better than novices Negative correlation with age Weak positive correlation with GCI Experts do not have greater general WMC

15 MEASURES: GEOLOGIC WORKING MEMORY CAPACITY DOMAIN SPECIFIC WMC Block diagram test – ubiquitous in teaching Geologic and non-geologic Range of difficulty Test: View block Reproduce on tablet PC

16 RESULTS: GEOLOGIC WORKING MEMORY CAPACITY FINDINGS People overall do better on geologic blocks Geologists do NOT do better on geologic blocks Experts are faster, can be more sloppy, give up quickly, and tend to correct non-geologic blocks NOVICE (Non-Geo)INTERMEDIATEEXPERT

17 MEASURES: OUTDOOR COMFORT NOVELTY SPACE SURVEY Modified from Elkins Measures 3 of the 4 dimensions of novelty space –Cognitive (knowledge and skills relevant to task) –Geographic (familiarity with the outdoor setting) –Psychological (familiarity with the task expectations) 5 point Likert scale I know a lot about geology. I have difficulty identifying geologic structures in the field. I know where we are going on this field project. I am unfamiliar with this field area. I know what is expected of me during this field project. I am uncomfortable working alone in the field.

18 RESULTS: OUTDOOR COMFORT FINDINGS Cognitive novelty decreases with expertise Geographic and social novelty decrease slightly with expertise Experts are more comfortable with mapping task geographic cognitive psychological

19 MEASURES: GEOLOGIC PROBLEM-SOLVING THE BEDROCK MAPPING TASK Walk-through introduction to rock types Air photo and topo maps ~1 km by 500 m area Unlimited time 4 major rock units IMAGE REMOVED DUE TO ONGOING RESEARCH

20 MEASURES: BEDROCK MAPS MAP SCORING – RANK ORDER BASED ON: Correct ID of units Accuracy of contacts Accuracy of thickness Correct structural interpretation s. rho = -.47, p =.01 IMAGE REMOVED DUE TO ONGOING RESEARCH

21 RESULTS: BEDROCK MAPS CORRELATIONS: Map rank and GCI: significant correlation Map rank and WMC (general and geologic): correlation Map rank has no correlation with spatial visualization Map performance mainly driven by domain content knowledge r = -.49 (without these possible outliers) Spatial WMC Composite Map Rank s. rho = -0.55, p=0.002

22 MEASURES: GPS TRACKS PARAMETERS Total time, distance, no. stops Mean speed, intersections Up/down ratio, area seen ANALYSIS Cluster analysis based on track characteristics to identify similar track types Visual inspection and qualitative analysis to identify signature clusters Overlay tracks on maps

23 1 2 3 4 RESULTS: GPS TRACKS

24 SIX SIGNATURE CLUSTERS Reflect different mapping strategies Wandering path Looping coverageBack & forth LinearBack & forth w /loopsLinear w/ loops

25 RESULTS: GPS TRACKS Mapping Expertise Expert Novice Intermediate Participants 1234 Back & Forth Linear Back & Forth w Loops Linear w Loops Looping Coverage Wandering Path #1 #2 #4 #3 #5 #29 #26#28 #27 #25

26 RESULTS: GPS TRACKS AND MAPS ANALYSIS (N=9) Time spent within units Time spent along contacts between units Accuracy of map units and contacts (overlaid on key) IMAGE REMOVED DUE TO ONGOING RESEARCH

27 RESULTS: GPS TRACKS AND MAPS FINDINGS Mapping rank is moderately correlated with # of intersections; significant correlation with accuracy (Unit 1 and Unit 3) Mapping expertise moderately correlated with area seen and # of intersections; some moderate correlation with accuracy and time spent Unit 1-2 contact

28 RESULTS: MAPPING TASK FINDINGS Maps and tracks reflect individual strategies Experts tend to make better maps but so do newly trained novices Experts tend to be more efficient with their route, and more effective covering more area in shorter time Experts tend to be more accurate and consistent with placement – might be due to ability to orient themselves in the field Not one mapping strategy produces a good map, however some are better than others Good – back & forth, linear Bad – back & forth w/ loops Novices more likely to adopt poor strategy

29 OVERALL PRELIMINARY FINDINGS EXPERTS: Have more domain-specific content knowledge Have reduced cognitive novelty Were not significantly better spatial-visualizers than undergrads Do not seem to have greater geologic or general WMC? Produce better maps (though newly trained novices also produce good maps)! Overall, individual differences in strategies used to produce successful maps

30 IMPLICATIONS FOR TEACHING Domain content knowledge is critical Early instruction in spatial ability Purposeful movement in the field – physical instruction? No one best strategy for mapping success (but avoid bad strategies)


Download ppt "Learning Across the Expert-Novice Continuum: Cognition in the Geosciences Heather Petcovic Western Michigan University."

Similar presentations


Ads by Google