Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chromate Bioremediation: Formation and Fate of Organo-Cr(III) Complexes Luying Xun1, Brent Peyton2, Sue Clark1 , Dave Younge1 Washington State University1.

Similar presentations


Presentation on theme: "Chromate Bioremediation: Formation and Fate of Organo-Cr(III) Complexes Luying Xun1, Brent Peyton2, Sue Clark1 , Dave Younge1 Washington State University1."— Presentation transcript:

1 Chromate Bioremediation: Formation and Fate of Organo-Cr(III) Complexes Luying Xun1, Brent Peyton2, Sue Clark1 , Dave Younge1 Washington State University1 Montana State University2

2 Common Valence States of Chromium
Cr(III) Cr(VI) Bioremediation Primarily industrial process Natural Contaminant Non-carcinogenic Carcinogenic Insoluble (pH 7) Chromate, CrO42- Trace element Soluble (pH 7) Most stable Reactive

3 Many microorganisms can reduce Cr(VI)
Examples: Shewanella spp. Geobacter spp. Desulfovibrio spp. Deinococcus radiodurans Cellulomonas spp. Enterobacter spp. Pseudomonas spp. Escherichia coli Streptomyces spp. Fungi and more.

4 Mechanisms of Chromate Reduction
Fortuitous reduction by: Glutathione 1 Ascorbate (Vit. C) 1 H2S or Fe(II) 1 Flavin reductase Quinone reductase 1 Cytochrome C 1 Hydrogenase 1 Couple to anaerobic respiration 1 Possible, but only one report 1From literature

5 Riboflavin vitamin B2 FMN: flavin mononucleotide FAD: flavin adenine
FMN and FAD are well known enzyme cofactors Riboflavin vitamin B2 FMN: flavin mononucleotide FAD: flavin adenine dinucleotide

6 Flavin Reductase (Fre) is Common in Cell
FMN and FAD NADH + H+ H2O2 Fre NAD+ O2 FMNH2 and FADH2 reduce metals, quinones

7 Cr(VI) Reduction rates by E. coli Fre
Anaerobic Cr(VI) Reduction (mmol mg-1 min-1) Flavin FAD FMN Riboflavin

8 Formation of Soluble Complexes after Cr(VI) Reduction by Fre
Control 10 mM 25 mM CrPO4 Organo-Cr(III) Geoff Puzon

9 The Product is NAD+-Cr(III) Complex
- NAD+:Cr(III) ratio is 2:1 Identified as a polymer by using Dialysis Size Exclusion Chromatography Electron Paramagnetic Resonance Geoff Puzon

10 Organo-Cr(III) production is common
Fortuitous reduction by: Glutathione Ascorbate (Vit. C) H2S or Fe(II)1 Quinone reductase Flavin reductase Cytochrome C Hydrogenase (End product) Organo-Cr(III) Organo-Cr(III) Organo-Cr(III) Organo-Cr(III) Organo-Cr(III) Organo-Cr(III) N/A 1In the presence of organic ligands.

11 Hypothesis: Organo-Cr(III) is readily formed during Cr(VI) reduction in the presence of organics
Experiments: Control 5 mM Cr(VI) 10 mM dithionite 50 mM KPi (pH 7) Cr(III) precipitates With selected metabolites 5 mM Cr(VI) 10 mM dithionite 50 mM KPi (pH 7) Organo-Cr(III) Geoff Puzon

12 Soluble Organo-Cr(III) end products
Control No organic Serine-Cr(III) GSH-Cr(III) Lactate-Cr(III) Malate-Cr(III) Cysteine-Cr(III) Oxaloacetate-Cr(III) Pyruvate-Cr(III)

13 Complex solubility Organic ligand Soluble Cr(III) (mM) Percent soluble Cr(III) Highly soluble organo-Cr(III) end products Histidine 100% Glutathione 95% a-ketoglutarate 93% Citrate 86% Malate 78% Serine 72% Cysteine 69% Pyruvate 65% Oxaloacetate 57% Slightly soluble organo-Cr(III) end products Leucine 14% Glycine 13% Insoluble organo-Cr(III) end products Succinate 0.4% Fumarate < 0.01 0% Lactate Tyrosine Acetate Ethanol KPi-Cr(III) Control 100 mM KPi pH 7.0

14 Absorbance Spectra Absorbance Wavelength (nm) Peak Absorbance
Cr(NO3)3= 579nm Cys-Cr(III)= 584nm Mal-Cr(III)= 595nm Ser-Cr(III)= 600nm GSH-Cr(III)= 604nm Ox-Cr(III)= 607nm Cysteine-Cr(III) Malate-Cr(III) GSH-Cr(III) Serine-Cr(III) Absorbance Oxaloacetate-Cr(III) Cr(NO3)3 Wavelength (nm)

15 Cr(III)-DNA Adducts are Formed from Cr(VI) Reduction
The adducts block DNA polymerase. Proposed Cr(III)-DNA adducts. Arakawa et al Carcinogenesis 27: Zhicheng Zhang

16 Cr(VI) Inorganic Cr(III) Microbial activities Organo-Cr(III)
Primarily industrial process Inorganic Cr(III) Cr(VI) Bioremediation Microbial activities Organo-Cr(III)

17 Mass balance of Cr after reduction by E. coli
Total Cr (In Supernatant) Cr (mM) Cr(VI) Days Geoff Puzon

18 Formation of both soluble and insoluble Cr(III) from Cr(VI) reduction
Bacteria Soluble Cr(III)(ppm) Insoluble Cr(III)(ppm) Cellulomonas sp. ES6 4.12  0.02 0.49  0.01 S. oneidensis MR1 3.44  0.06 2.22  0.13 Ps. putida MK1 3.01  0.30 1.61  0.30 Ps. aeruginosa PAO1 3.17  0.01 1.71  0.01 D. vulgaris Hildenborough 1.25  0.30 2.60  0.44 D. desulfurreducens G20 3.18  0.30 1.84  0.20 Leafsonia sp. 2.02  0.06 2.55  0.04 Rhodococcus sp. 2.70  0.09 1.84  0.02 Initial Cr(VI) concentration is 4 ppm Ranjeet Tokala

19 Cr(VI) Cr(III) Microbial activities Organo-Cr(III) Recalcitrant
Primarily industrial process Cr(III) Cr(VI) Bioremediation Microbial activities Organo-Cr(III) Recalcitrant

20 Malate-Cr(III) is recalcitrant but not toxic to R. eutropha JMP134
Malate + Malate-Cr(III) Substrate: 2 mM Geoff Puzon

21 Cr(VI) Cr(III) Microbial activities Organo-Cr(III) Recalcitrant
Primarily industrial process Cr(III) Cr(VI) Bioremediation Microbial activities Organo-Cr(III) Negatively charged Mobile in soil Recalcitrant

22 Malate-Cr(III) moves through a soil column
Br -tracer Malate-Cr(III) Cr(NO3)3 - NaBr: 10 ppm Malate-Cr(III): 10 ppm Cr(NO3)3: 10 ppm Mobile phase: simulated groundwater pH 7 Immobile phase: Hanford soil Ranjeet Tokala

23 Fate of NAD+-Cr(III)? - Bacteria enriched with NAD+-Cr(III)
- Bacterial utilization – slow process - Soluble Cr(III) decreased PTX1 PTX2 Leifsonia sp. Rhodococcus sp. Geoff Puzon

24 Updated Biogeochemical Cycle of Cr
Primarily industrial process Cr(III) Cr(VI) Bioremediation Microbial mineralization Microbial reduction Organo-Cr(III) Recalcitrant Negatively charged Mobile in soil

25 Financial supports ACKNOWLEDGMENTS
Dr. Geoff Puzon – organo-Cr(III)/enzyme, recalcitrance, and mineralization Dr. Ranjeet Tokala – organo-Cr(III)/cell and soil columns Zhicheng Zhang – organo-Cr(III) characterization Financial supports Department of Energy ERSD (NABIR)

26

27 Chromate Reduction by Flavin reductase (Fre)
NADH Fre Flavin ox red H 2 O Cr(VI) Cr(III) NAD +


Download ppt "Chromate Bioremediation: Formation and Fate of Organo-Cr(III) Complexes Luying Xun1, Brent Peyton2, Sue Clark1 , Dave Younge1 Washington State University1."

Similar presentations


Ads by Google