Download presentation
Published byChristina Gloria James Modified over 9 years ago
1
Chromate Bioremediation: Formation and Fate of Organo-Cr(III) Complexes Luying Xun1, Brent Peyton2, Sue Clark1 , Dave Younge1 Washington State University1 Montana State University2
2
Common Valence States of Chromium
Cr(III) Cr(VI) Bioremediation Primarily industrial process Natural Contaminant Non-carcinogenic Carcinogenic Insoluble (pH 7) Chromate, CrO42- Trace element Soluble (pH 7) Most stable Reactive
3
Many microorganisms can reduce Cr(VI)
Examples: Shewanella spp. Geobacter spp. Desulfovibrio spp. Deinococcus radiodurans Cellulomonas spp. Enterobacter spp. Pseudomonas spp. Escherichia coli Streptomyces spp. Fungi and more.
4
Mechanisms of Chromate Reduction
Fortuitous reduction by: Glutathione 1 Ascorbate (Vit. C) 1 H2S or Fe(II) 1 Flavin reductase Quinone reductase 1 Cytochrome C 1 Hydrogenase 1 Couple to anaerobic respiration 1 Possible, but only one report 1From literature
5
Riboflavin vitamin B2 FMN: flavin mononucleotide FAD: flavin adenine
FMN and FAD are well known enzyme cofactors Riboflavin vitamin B2 FMN: flavin mononucleotide FAD: flavin adenine dinucleotide
6
Flavin Reductase (Fre) is Common in Cell
FMN and FAD NADH + H+ H2O2 Fre NAD+ O2 FMNH2 and FADH2 reduce metals, quinones
7
Cr(VI) Reduction rates by E. coli Fre
Anaerobic Cr(VI) Reduction (mmol mg-1 min-1) Flavin FAD FMN Riboflavin
8
Formation of Soluble Complexes after Cr(VI) Reduction by Fre
Control 10 mM 25 mM CrPO4 Organo-Cr(III) Geoff Puzon
9
The Product is NAD+-Cr(III) Complex
- NAD+:Cr(III) ratio is 2:1 Identified as a polymer by using Dialysis Size Exclusion Chromatography Electron Paramagnetic Resonance Geoff Puzon
10
Organo-Cr(III) production is common
Fortuitous reduction by: Glutathione Ascorbate (Vit. C) H2S or Fe(II)1 Quinone reductase Flavin reductase Cytochrome C Hydrogenase (End product) Organo-Cr(III) Organo-Cr(III) Organo-Cr(III) Organo-Cr(III) Organo-Cr(III) Organo-Cr(III) N/A 1In the presence of organic ligands.
11
Hypothesis: Organo-Cr(III) is readily formed during Cr(VI) reduction in the presence of organics
Experiments: Control 5 mM Cr(VI) 10 mM dithionite 50 mM KPi (pH 7) Cr(III) precipitates With selected metabolites 5 mM Cr(VI) 10 mM dithionite 50 mM KPi (pH 7) Organo-Cr(III) Geoff Puzon
12
Soluble Organo-Cr(III) end products
Control No organic Serine-Cr(III) GSH-Cr(III) Lactate-Cr(III) Malate-Cr(III) Cysteine-Cr(III) Oxaloacetate-Cr(III) Pyruvate-Cr(III)
13
Complex solubility Organic ligand Soluble Cr(III) (mM) Percent soluble Cr(III) Highly soluble organo-Cr(III) end products Histidine 100% Glutathione 95% a-ketoglutarate 93% Citrate 86% Malate 78% Serine 72% Cysteine 69% Pyruvate 65% Oxaloacetate 57% Slightly soluble organo-Cr(III) end products Leucine 14% Glycine 13% Insoluble organo-Cr(III) end products Succinate 0.4% Fumarate < 0.01 0% Lactate Tyrosine Acetate Ethanol KPi-Cr(III) Control 100 mM KPi pH 7.0
14
Absorbance Spectra Absorbance Wavelength (nm) Peak Absorbance
Cr(NO3)3= 579nm Cys-Cr(III)= 584nm Mal-Cr(III)= 595nm Ser-Cr(III)= 600nm GSH-Cr(III)= 604nm Ox-Cr(III)= 607nm Cysteine-Cr(III) Malate-Cr(III) GSH-Cr(III) Serine-Cr(III) Absorbance Oxaloacetate-Cr(III) Cr(NO3)3 Wavelength (nm)
15
Cr(III)-DNA Adducts are Formed from Cr(VI) Reduction
The adducts block DNA polymerase. Proposed Cr(III)-DNA adducts. Arakawa et al Carcinogenesis 27: Zhicheng Zhang
16
Cr(VI) Inorganic Cr(III) Microbial activities Organo-Cr(III)
Primarily industrial process Inorganic Cr(III) Cr(VI) Bioremediation Microbial activities Organo-Cr(III)
17
Mass balance of Cr after reduction by E. coli
Total Cr (In Supernatant) Cr (mM) Cr(VI) Days Geoff Puzon
18
Formation of both soluble and insoluble Cr(III) from Cr(VI) reduction
Bacteria Soluble Cr(III)(ppm) Insoluble Cr(III)(ppm) Cellulomonas sp. ES6 4.12 0.02 0.49 0.01 S. oneidensis MR1 3.44 0.06 2.22 0.13 Ps. putida MK1 3.01 0.30 1.61 0.30 Ps. aeruginosa PAO1 3.17 0.01 1.71 0.01 D. vulgaris Hildenborough 1.25 0.30 2.60 0.44 D. desulfurreducens G20 3.18 0.30 1.84 0.20 Leafsonia sp. 2.02 0.06 2.55 0.04 Rhodococcus sp. 2.70 0.09 1.84 0.02 Initial Cr(VI) concentration is 4 ppm Ranjeet Tokala
19
Cr(VI) Cr(III) Microbial activities Organo-Cr(III) Recalcitrant
Primarily industrial process Cr(III) Cr(VI) Bioremediation Microbial activities Organo-Cr(III) Recalcitrant
20
Malate-Cr(III) is recalcitrant but not toxic to R. eutropha JMP134
Malate + Malate-Cr(III) Substrate: 2 mM Geoff Puzon
21
Cr(VI) Cr(III) Microbial activities Organo-Cr(III) Recalcitrant
Primarily industrial process Cr(III) Cr(VI) Bioremediation Microbial activities Organo-Cr(III) Negatively charged Mobile in soil Recalcitrant
22
Malate-Cr(III) moves through a soil column
Br -tracer Malate-Cr(III) Cr(NO3)3 - NaBr: 10 ppm Malate-Cr(III): 10 ppm Cr(NO3)3: 10 ppm Mobile phase: simulated groundwater pH 7 Immobile phase: Hanford soil Ranjeet Tokala
23
Fate of NAD+-Cr(III)? - Bacteria enriched with NAD+-Cr(III)
- Bacterial utilization – slow process - Soluble Cr(III) decreased PTX1 PTX2 Leifsonia sp. Rhodococcus sp. Geoff Puzon
24
Updated Biogeochemical Cycle of Cr
Primarily industrial process Cr(III) Cr(VI) Bioremediation Microbial mineralization Microbial reduction Organo-Cr(III) Recalcitrant Negatively charged Mobile in soil
25
Financial supports ACKNOWLEDGMENTS
Dr. Geoff Puzon – organo-Cr(III)/enzyme, recalcitrance, and mineralization Dr. Ranjeet Tokala – organo-Cr(III)/cell and soil columns Zhicheng Zhang – organo-Cr(III) characterization Financial supports Department of Energy ERSD (NABIR)
27
Chromate Reduction by Flavin reductase (Fre)
NADH Fre Flavin ox red H 2 O Cr(VI) Cr(III) NAD +
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.