Download presentation
Presentation is loading. Please wait.
Published byBrook Wheeler Modified over 9 years ago
1
- 1 - Anodic Oxidative Cyclizations: Tools for the Synthetic Organic Chemist Mélina Girardin October 19 th 2006
2
- 2 - Presentation overview 1) Introduction to organic electrochemistry - Electrosynthesis cell - Electrode potential - Radical cation reactivity 2) Cyclizations with oxygen nucleophiles 3) Cyclizations with formation of C-C bond 4) Total synthesis of heptemerone B and guanacastepene E
3
- 3 - What is Anodic Oxidation? Electron transfer initiated at an electrode: Electrode potential is the energy for the electron transfer: -Selectivity between electrophores Current is a flow of electrons: It is an heterogeneous reaction: -Reactivity is influenced by the electrode material 1 Faraday (F) = 1 mole of e - -Non-thermal activation of molecules
4
- 4 - What is an Electrosynthesis Cell? The basic setup: a.Beaker, vial, round-bottom flask b.Power supply: domestic or specialized c.Ammeter and voltmeter d.Working electrode: the anode for oxidation e.Auxiliary electrode: the cathode f.Solvent (ROH, MeCN, DCM, THF, etc.) g.Soluble supporting electrolyte (LiClO 4, R 4 N + X - ) h.Agitation d.e.
5
- 5 - Can we Improve the Setup? The options: i.Divided cell with porous disk j.Potensiostat k.Reference electrode l.Inert atmosphere m.Thermoregulation j. k. i.
6
- 6 - The Importance of the Potential Constant current (i 0 ): -Often used -Simple setup -Potential increases Controlled potential (E 0 ): -High selectivity -Need a potensiostat -Current decreases -Used when needed
7
- 7 - RH 2 is an electrophile What is the Reactivity of a Radical Cation? RH 2 · + radical cation is an acid is an oxidizer RH 2 Nu · RH ·
8
- 8 - Kolbe Oxidation of Carboxylic Acids (1849) is an electrophile RH 2 · + radical cation is an acid is an oxidizer RH 2 Nu · RH · is a radical dimerization; chain reaction RH 2
9
- 9 - Kolbe Oxidation of Carboxylic Acids (1849) Asahi (Japan) : 100 tons sebacic acid annually Organic Electrochemistry, 4 th Ed. Lund, H., Hammerich, O., Ed. Marcel Dekker, Inc., New York, 2001, 1391 p.
10
- 10 - Anodic Functionalization of Amino Acids is an electrophile RH 2 · + radical cation is an acid is an oxidizer RH 2 Nu · RH · is a radical - e - dimerization; chain reaction RH + is an acid R is an electrophile RHNu RH 2
11
- 11 - Anodic Functionalization of Amino Acids Shono, T.; Matsumura, Y.; Tsubata, K. Org. Syntheses 1990, Coll. Vol. 7, 307-310
12
- 12 - TEMPO-Mediated Oxidative Resolution is an electrophile RH 2 · + radical cation is an acid is an oxidizer RH 2 Nu · RH · is a radical - e - dimerization; chain reaction RH + is an acid R is an electrophile RHNu mediated electrochemical reaction
13
- 13 - TEMPO-Mediated Oxidative Resolution Kashiwagi, Y.; Yanagisawa, Y.; Kurashima, F.; Anzai, J.; Osa, T.; Bobbitt, J.M. Chem. Commun. 1996, 24, 2745-2746.
14
- 14 - Intramolecular Trapping of Radical Cations is an acid is an electrophile RH 2 · + radical cation is an acid is an oxidizer RH 2 Nu · RH · is a radical - e - dimerization; chain reaction RH + is an acid R is an electrophile RHNu is a radical - e - RH 2 Nu + … is an electrophile RH 2 Nu 2 mediated electrochemical reaction
15
- 15 - General Mechanism for Anodic Cyclizations Umpolung reactivity results in coupling of bis-nucleophiles:
16
- 16 - Oxygen Nucleophiles: Furans/Pyrans Synthesis Sutterer, A.; Moeller, K.D. J. Am. Chem. Soc. 2000, 122, 5636-5637.
17
- 17 - Improving Stereoselectivity Liu, B.; Duan, S.; Sutterer, A.; Moeller, K.D. J. Am. Chem. Soc. 2002, 124, 10101-10111.
18
- 18 - Accounting for the Stereoselectivity? 17 ratio suggests a kinetically controlled cyclization Proof of the independance on enol ether geometry: Liu, B.; Duan, S.; Sutterer, A.; Moeller, K.D. J. Am. Chem. Soc. 2002, 124, 10101-10111. Sterics and stereoelectronic effects ( Bürgi -Dunitz angle):
19
- 19 - A Little More on the Reaction Conditions… -Reticulated Vitreous Carbon anode: chemically inert -Supporting electrolyte (Et 4 NOTs): ionic conductivity -Solvent (MeOH): quenches cationic intermediate -Cosolvent (THF): lowers [MeOH] at the electrode -Base (2,6-lutidine): quenches acidity at the anode -2 Faraday / mole: 2 e /molecule Grahame, D.C. Chem. Rev. 1947, 41, 441-501. -
20
- 20 - A Challenge in Chemoselectivity? Duan, S.; Moeller, K.D. J. Am. Chem. Soc. 2002, 124, 9368-9369.
21
- 21 - Expanding the Methodology to Lactones Brandt, J.D.; Moeller, K.D. Org. Lett. 2005, 7, 3553-3556.
22
- 22 - Possible Mechanism Explaining Solvent Effects Brandt, J.D.; Moeller, K.D. Org. Lett. 2005, 7, 3553-3556.
23
- 23 - Early C-C Bond Formation: Bis Enol Ethers Moeller, K.D.; Tinao, L.V. J. Am. Chem. Soc. 1992, 114, 1033-1041.
24
- 24 - Differentiating the Reactive Moieties Sun, Y.; Moeller, K.D. Tetrahedron Lett. 2002, 43, 7159-7161. Frey, D.A.; Reddy, S.H.K.; Moeller, K.D. J. Org. Chem. 1999, 64, 2805-2813.
25
- 25 - Electron-Rich Phenyls and Over-Oxidation New, D.G.; Tesfai, Z.; Moeller, K.D. J. Org. Chem. 1996, 61, 1578-1598. E 1/2 = 1.40 V E 1/2 = 0.9-1.0V
26
- 26 - Preliminary Results on Furan Cyclization EntryRnYield (%) 1H175 2Me154 3H262 New, D.G.; Tesfai, Z.; Moeller, K.D. J. Org. Chem. 1996, 61, 1578-1598.
27
- 27 - Wright’s Furan Annulation Strategy Whitehead, C.R.; Sessions, H.; Ghiviriga, I.; Wright, D.L. Org. Lett. 2002, 4, 3763-3765.
28
- 28 - Chemical and Electrochemical Oxidations EntryConditionsObservationYield (%) 1CAN, MeCNhydrolysis--- 2Mn(OAc) 3, Et 2 Ohydrolysis--- 3VO(OCH 2 CF 3 )Cl 2 decomposition--- 4Ar 3 NSbCl 6 cyclization68 5carbon anode, i-PrOH, MeCN, 2,6-lutidine, LiOCl 4 cyclization76 Sperry, J.B.; Whitehead, C.R.; Ghiviriga, I.; Walczak, R.M.; Wright, D.L. J. Org. Chem. 2004, 69, 3726-3734.
29
- 29 - Scope of the Methodology Sperry, J.B.; Whitehead, C.R.; Ghiviriga, I.; Walczak, R.M.; Wright, D.L. J. Org. Chem. 2004, 69, 3726-3734.
30
- 30 - 7-Membered Rings: the gem-Dialkyl Effect Sperry, J.B.; Wright, D.L. J. Am. Chem. Soc. 2005, 127, 8034-8035.
31
- 31 - Functional Group Tolerance Sperry, J.B.; Whitehead, C.R.; Ghiviriga, I.; Walczak, R.M.; Wright, D.L. J. Org. Chem. 2004, 69, 3726-3734.
32
- 32 - Replacing the Furan for a Thiophene Sperry, J.B.; Wright, D.L. Tetrahedron 2006, 62, 6551-6557. Competition study: furan vs thiophene
33
- 33 - Which Functionality Gives the First Electron? Sperry, J.B.; Whitehead, C.R.; Ghiviriga, I.; Walczak, R.M.; Wright, D.L. J. Org. Chem. 2004, 69, 3726-3734.
34
- 34 - Cyclic Voltammetry: an Electrochemical Tool Sperry, J.B.; Whitehead, C.R.; Ghiviriga, I.; Walczak, R.M.; Wright, D.L. J. Org. Chem. 2004, 69, 3726-3734.
35
- 35 - Mechanistic Probe Molecules Sperry, J.B.; Whitehead, C.R.; Ghiviriga, I.; Walczak, R.M.; Wright, D.L. J. Org. Chem. 2004, 69, 3726-3734.
36
- 36 - Mechanism: Refined Proposition Sperry, J.B.; Wright, D.L. Tetrahedron 2006, 62, 6551-6557.
37
- 37 - The Guanacastepene and Hepteromone Families Guanacastepenes Isolation from an unidentified fungus (Costa Rica) Clardy, J. et. al. J. Am. Chem. Soc. 2000, 122, 2116-2117. Clardy, J. et. al. J. Am. Chem. Soc. 2001, 123, 9900-9901. Total syntheses: Danishefsky (A:2002), Mehta (C:2005), Sorensen (E:2006), Overman (N:2006) Formal syntheses: Snider (A:2003), Hanna (A:2004), etc. Synthetic approaches: more than 10 Hepteromones Isolation from Coprinus heptemerus ("inkcap" mushroom) Sterner, O. et. al. Tetrahedron 2005, 61, 9527-9532. No published total synthesis.
38
- 38 - Trauner’s Convergent Retrosynthetic Analysis Hughes, C.C.; Miller, A.K.; Trauner, D. Org. Lett. 2005, 7, 3425-3428. Miller, A.K.; Chambers, C.H.; Kennedy-Smith, J.J.; Gradl, S.N.; Trauner, D. Submitted
39
- 39 - Synthesis of the A-Ring Fragment Miller, A.K.; Chambers, C.H.; Kennedy-Smith, J.J.; Gradl, S.N.; Trauner, D. Submitted
40
- 40 - Synthesis of the C-Ring Fragment Hughes, C.C.; Miller, A.K.; Trauner, D. Org. Lett. 2005, 7, 3425-3428.
41
- 41 - Diastereoselectivity of the Coupling Iimura, S.; Overman, L.E.; Paulini, R.; Zakarian, A. J. Am. Chem. Soc. 2006, 128, 13095-13101.
42
- 42 - Assembly of Fragments A and C Miller, A.K.; Chambers, C.H.; Kennedy-Smith, J.J.; Gradl, S.N.; Trauner, D. Submitted
43
- 43 - B-Ring by Anodic Oxidation Miller, A.K.; Chambers, C.H.; Kennedy-Smith, J.J.; Gradl, S.N.; Trauner, D. Submitted
44
- 44 - Completion of the Total Syntheses Miller, A.K.; Chambers, C.H.; Kennedy-Smith, J.J.; Gradl, S.N.; Trauner, D. Submitted
45
- 45 - Organic Electrochemistry: What to Remember? - The electron is a reagent transfered at the electrode - The electrode potential is the reagent strength - Electrochemistry can probe reaction mechanisms - Electron transfer triggers umpolung reactivity:
46
- 46 - Anodic Oxidations in Total Synthesis
47
- 47 - Aknowledgments Prof. Louis Barriault Patrick Ang Steve Arns Éric Beaulieu Marie-Christine Brochu Rachel Beingessner Christiane Grisé Nathalie Goulet Véronique Laberge Roch Lavigne Dr. Louis Morency Maxime Riou Effiette Sauer Guillaume Tessier Prof. Dirk Trauner
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.