Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introduction Mobile commerce(M-Commerce) is developing trend due to successful experience of E-Commerce(EC) Most significant difference between M-Commerce.

Similar presentations


Presentation on theme: "Introduction Mobile commerce(M-Commerce) is developing trend due to successful experience of E-Commerce(EC) Most significant difference between M-Commerce."— Presentation transcript:

0 Expert Systems with Applications, vol. 36, no. 2, pp. 3543-3554, 2009
Building and Evaluating a Location-Based Service Recommendation System with a Preference Adjustment mechanism Expert Systems with Applications, vol. 36, no. 2, pp , 2009 M.-H. Kuo et al.

1 Introduction Mobile commerce(M-Commerce) is developing trend due to successful experience of E-Commerce(EC) Most significant difference between M-Commerce and EC  mobility feature of mobile device Studies focusing on location data are created  characterized as location-based service(LBS) 이 커머스 시장이 커짐에 따라 모바일 커머스가 발전해 나가고 있는 시점에서 이 커머스와 모바일 커머스의 차이점인 모바일 디바이스의 이동성이라는 커다란 특징을 이용해서 LBS 즉 위치기반 서비스에 관한 연구가 대두 되고 있습니다 본 논문의 연구 또한 LBS의 일환으로 변경 사용자의 선호도에 기반해서 선호도의 조절이 가능한 위치기반 추천 시스템에 관한 연구 입니다

2 Previous Works Basic theme is based on that relevant information changes according to the location of mobile customers (Chen, 2002) The service have been adopted for various purpose L-PRS: a location-based personalized recommender system (Kim, Song, & Yang, 2003) The key for LBS is the development of interface design and ability to provide correct and real-time content A user-oriented contents recommendation system in peer-to-peer architecture (Kim, Kim, & Cho, 2008)  Preference adjustment is necessary to recommendation system 먼저 시행된 연구로는 2002년에 발표된 논문에서 LBS는 모바일 유저의 위치에 따라서 적절한 정보로 변경해주는 것으로 기본 테마가 성립 되었고 그 후로 계속적으로 LBS의 중요성에 관해서 조명 되어서 다양한 목적의 LBS 서비스가 연구 되지만 시장에서 수적인 면에서 아직 부족하게 됩니다. 2008년에 진행된 연구에서는 LBS의 핵심이 인터페이스 디자인과 리얼타임으로 정확한 정보를 제공하는 능력이라는 것에 결론이 있었고 그에 따라서 선호도 예측과 추천 메커니즘을 디자인할 때 사용자의 선호도 조정이 필요하게 됩니다.

3 Goal of this research Establishing a location-based information recommend system Integrating geographical location and personnel preference Developing and measuring a personalized prototype system based on location based service recommendation model(LBSRM) Recommend hotel information Designing an experimental method for effectiveness of preference adjustment Long-term preference Short-term preference 그래서 본 논문은 다음과 같은 목표로 연구를 진행 합니다 첫번째로 지리적인 위치와 개인의 선호도를 융합한 위치기반 정보 추천 시스템을 확립 시키고 두번째로 이러한 시스템을 개발하고 추천 모델에 대한 측정을 하게되고요 본 논문에서는 호텔 추천 서비스를 예로 들었습니다. 세번째로는 개인의 선호도의 변경을 효과적으로 반영하기 위한 방법을 제시합니다 바로 긴 시간 동안의 선호도와 짧은 시간동안의 선호도를 이용해서 효과적으로 선호도를 반영합니다

4 Recommendation model for LBS

5 Location-based database
is an attribute set of LBS items Dataset : including dynamic and static attribute Dynamic : - numeric type, catalogic type Dynamic att : 유저 선호도에 영향을 주는 속성 Static att. : 유저 선호도에 영향을 주지 않는 속성

6 User preference database
Include user static data and dynamic data : preference cluster of location based information of different users

7 User history database Database record historical items  user has selected Including contents Mobile device identification code System recommended items User actually selected items Content of each item

8 Recommendation module
Area data filtering D : search area, (Xu, Yu) : user location Information grouping

9 Recommendation score calculating
Score of numeric type Score of catalogic type Total recommendation score r : rate of time-discount p : total number of recom- mendation items q : number of history record

10 Preference adjustment : Short-term adjustment
Use the difference of the recommendation score To prevent user preference goes to 0 : recommendation score when the user selects item C : recommendation score when the most recommended information is item A

11 Preference adjustment : Long-term adjustment
Use Bayes’s decision procedure Add time discount rate ( r ) : group number of items : the number of items occurred : user selecting item of : system recommendation item : the sum of recommendation numbers

12 Development of prototype system
User location based hotel recommendation system

13 Development of prototype system
User location based hotel recommendation system

14 Development of prototype system
User location based hotel recommendation system

15 Development of prototype system
User registration 3 preference of att. of numeric type (distance, pricing, service) C.P number Att. of catalogic type multiple-choice

16 Development of prototype system
Recommendation simulation system Electronic map C.P Interface

17 Recommendation simulation system
User location selection Randomly pick a location  in order to simulate mobile environment Search all hotels with in search range Using Euclidean Distance Recommendation step Dived into three groups distance(D), Price(P) and service(S) Take recommendation Calculation of the scores and display at the table User can click “details’ and see further discription Preference adjustment step Get the user feedback Recommendation success or Preference adjustment is then undertaken Take recommendation 검색범위 안에있는 호텔의 스코어들을 계산한 다음에

18 Evaluation of prototype system

19 Evaluation of prototype system
Satisfaction of system recommendation Precision of recommendation On-line questionnaire is generated for the first 10 items 35 registrants. Each respondent conducted for six times Respondent : MBA student enrolled in National Defense University ,Taiwan 시스템의 추천이 완료되고 사용자가 결정을 한 후에 추천리스트의 10가지 항목에 대해서 질문이 이어진다 질문 대용으로는 추천된 호텔과 호텔의 속성에 대해 사용자들이 만족했는지에 대한 내용이고

20 Evaluation of prototype system

21 Evaluation of prototype system
The efficiency of preference adjustment Short-term preference <Shot-term>

22 Evaluation: Efficiency of preference adjustment
Short-term preference Lack of stability

23 Evaluation: Efficiency of preference adjustment
Long-term preference <Long-term> Attribute value에 따라서 호텔을 세게의 그룹으로 나누었다 시스템은 처음 추천을 하고 가장 점수가 높은것을 추천한다 유저의 선호ㄱ도가 변경되면 유저 히스토리 데이터베이스를 improved bayesian equation으로 계산한다 히스토리 데이터가 유저의 새로운 선호도만 포함하기 때문에 시스템은 바로 새로운 선호도를 계산한다. 그러므로 long-term 선호도는 히스토리 데이터의 양과 discount rate을 고려해서 계산해야 된다. 이 실험에서는 선호도 변경 주기를 다르게 하고 discount rate를 다르게 해서 세종류의 사람을 기준으로 평가했다

24 Evaluation: Efficiency of preference adjustment
Long-term preference 3. The lower the discount rate, the faster the learning adjustment speed The system reaction to preference adjustment is immediate if without history data 2. Latter adjustment(i.e., the more history data), the more needed number of adjustment

25 Evaluation: Efficiency of preference adjustment

26 Evaluation: Efficiency of preference adjustment

27 Evaluation: Efficiency of preference adjustment

28 Conclusion Proposed a model combines LBS and information recommendation Designed prototype system of preference adjustment Evaluated the effectiveness of the LBSRM as adopt the on-line questionnaires Proved that the expected recommendation effect is to be achieved Evaluated the efficiency of the preference adjustment Regard to the adjusting ability, long-term preference can reach better result Number of preference adjustment could be determined by changing the weight of recent preference(i.e., dynamic method of time-dicount rate)


Download ppt "Introduction Mobile commerce(M-Commerce) is developing trend due to successful experience of E-Commerce(EC) Most significant difference between M-Commerce."

Similar presentations


Ads by Google