Presentation is loading. Please wait.

Presentation is loading. Please wait.

Frequency Standards and VLBI: Observing an Event Horizon Sheperd Doeleman MIT Haystack Observatory.

Similar presentations


Presentation on theme: "Frequency Standards and VLBI: Observing an Event Horizon Sheperd Doeleman MIT Haystack Observatory."— Presentation transcript:

1 Frequency Standards and VLBI: Observing an Event Horizon Sheperd Doeleman MIT Haystack Observatory

2 mm/submm VLBI Collaboration MIT Haystack: Alan Rogers, Alan Whitney, Mike Titus, Dan Smythe, Brian Corey, Roger Cappalo, Vincent Fish U. Arizona Steward Obs: Lucy Ziurys, Robert Freund CARMA: Dick Plambeck, Douglas Bock, Geoff Bower Harvard Smithsonian CfA: Jonathan Weintroub, Jim Moran, Ken Young, Dan Marrone, David Phillips, Ed Mattison, Paul Yamaguchi James Clerk Maxwell Telescope: Remo Tilanus, Per Friberg UC Berkeley SSL: Dan Werthimer Caltech Submillimeter Observatory: Richard Chamberlain MPIfR: Thomas Krichbaum JHU - Applied Physics Labs: Greg Weaver Honeywell: Irv Diegel

3 The VLBI Technique /D (cm) ~ 0.5 mas /D (1.3mm) ~ 30  as

4 VLBI Basics Interferometer Baseline Coverage F T Earth Rotation Visibilities Map Sparsely Sampled Map must be real valued Usually most of map is blank

5 Averaging over Time and Frequency   Frequency Time

6 Atmospheric De-coherence From Moran & Dhawan 1995

7 VLBI Coherence Tcoh ~ 4sec Tcoh ~ 10sec ALMA Tcoh ~ 35sec

8 H-Maser/CSO Comparison  y (s 230GHz345GHz450GHz 5x10 -14 0.550.30.14 2x10 -14 0.910.830.73 1x10 -14 0.980.950.92 Costa et al 1991

9 Cryogenic Sapphire Osc for VLBI UWA Metrology Group (Tobar et al)

10 A CSO VLBI Ref. locked to GPS CSO CSO Control

11 Centaurus A: Optical

12 Centaurus A: Radio

13 The VLBA 43 GHz M87 Movie First 11 Observations Beam: 0.43x0.21 mas 0.2mas = 0.016pc = 60R s 1mas/yr = 0.25c Walker, Ly, Junor & Hardee 2008

14 Central Mass M ~ 4x10 6 M  Rsch = 10  as SgrA* Proper Motion V < 15km/s

15 X-ray/NIR Flares: An Indirect Size 100003000020000 Time offset (s) Baganoff et al 2001 Rise time ~300s Light crossing = 12 Rsch VLT: Genzel et al 2003 ~17 min periodicity?

16 What we really want: the ‘Shadow’ GR Code 0.6mm VLBI 1.3mm VLBI rotating non- rotating free fall orbiting Falcke et al SgrA* has the largest apparent Schwarzschild radius of any BH candidate. BUT… SgrA* scattered ~ 

17 1.3mm Observations of SgrA* 4500km Fringe Spacing = 55  as : A Baseball on the Moon

18 Determining a Size (Caveat) Gammie et al 14 Rsch (  as)  FWHM = 3.7 Rsch

19 Alternatives to a MBH Maoz 1998 Evaporation and Condensation

20 The minimum apparent size. Broderick & Loeb Noble & Gammie Event Horizon

21 <= 1.3mm-VLBI Number of antennas is limited. More sensitive to weather. More sensitive to phase noise in electronics and H-maser. Time hard to get on mm-wave telescopes. Calibration difficult: use closure relations

22 Hot Spot Models (P=27min) Spin=0, orbit = ISCO Spin=0.9, orbit = 2.5xISCO Models: Broderick & Loeb 230 GHz, ISM scattered

23 Closure Phases: Hawaii-CARMA-Chile Spin = 0.9 Hot-spot at ~ 6R g Period = 27 min.

24 Hot Spot Model (a=0, i=30) SMTO-Hawaii-CARMA, 8Gb/s, 230GHz, 10sec points

25 Summary 1.3mm VLBI confirms ~4Rsch diameter for SgrA* Implies that SgrA* is offset from Black Hole. submm VLBI is able to directly probe Event Horizon scales and trace time variable structure. Move to 345/450GHz requires frequency standards with  y (  ) < 10 -14 at 10s. Exploring H-Maser alternatives and modifying H-masers for short-term stability. Imaging/Modeling Event Horizon possible within ~5 years: new telescopes in Chile. Spare frequency standards?

26

27 VLBI Fringes Atmospheric Turbulence  GHz : Ionosphere >1 GHz: Troposphere

28 Scattering towards SgrA* Scattering size ~ 2 Intrinsic Structure masked by scattering : need high frequencies. Lack of observed scintillation of SgrA* at 0.8mm sets lower size limit : 2Rsch=12  as Use high frequency VLBI : resolution increases but scattering descreases.

29 Seeing Through the Scattering  OBS deviates from scattering for  cm  INT  SCAT for  mm  INT  

30 mm/submm VLBI plans Phase up apertures on Mauna Kea and CARMA to increase SNR (x10). Observe again on SMT-HI-CARMA triangle. Within 2 years add 4th antenna (Chile or LMT). Move to 345GHz and dual polarization. Connected element polarimetry results likely suffer from beam depolarization.

31 In situ standard testing


Download ppt "Frequency Standards and VLBI: Observing an Event Horizon Sheperd Doeleman MIT Haystack Observatory."

Similar presentations


Ads by Google