Download presentation
Presentation is loading. Please wait.
Published byShonda Greer Modified over 9 years ago
1
The Value of non enforceable Future Premiums in Life Insurance Pieter Bouwknegt AFIR 2003 Maastricht
2
Outline Problem Model Results Applications Conclusions
3
Problem Legal The policyholder can not be forced to pay the premium for his life policy Insurer is obliged to accept future premiums as long as the previous premium is paid Insurer is obliged to increase the paid up value using the original tariff rates Asymmetric relation between policyholder and insurer
4
Problem Economical The value of a premium can be split in two parts The value of the increase in paid up insured amount minus the premium The value to make the same choice a year later Valuation first part is like a single premium policy Valuation second part is difficult, as you need to value all the future premiums in different scenarios
5
Problem Include all future premiums? One can value all future premiums if it were certain payments: use the term structure of interest With a profitable tariff this leads to a large profit at issue for a policy However: can a policy be an asset to the insurer? If for a profitable policy the premiums stop, a loss remains for the insurer Reservation method can be overoptimistic and is not prudent
6
Problem Exclude all future premiums? Reserve for the paid up value, treat each premium as a separate single premium No profit at issue (or only the profit related with first premium) A loss making tariff leads to an additional loss with every additional premium A loss making tariff is not recognized at once Reservation method can be overoptimistic and is not prudent
7
Model Introduce economic rational decision TR m,t = PU m,t. SP m,t BE +max(PP m,t + FV m,t ;0) TR m,t = technical reserves before decision is made PU m,t = paid up amount SP m,t = single premium for one unit insured amount PP m,t = direct value premium payment FV m,t = future value of right to make decision in a year VP m,t = max(PP m,t + FV m,t ;0) PP m,t = ΔPU m. SP m,t - P FV m,t = 1 p x+m. E t Q [{exp (t,t+1)r(s)ds}VP m+1,t+1 ]
8
Model Tree problem The problem looks like the valuation of an American put option Use an interest rate tree consistent with today’s term structure of interest (arbitrage free) Start the calculation with the last premium payment for all possible scenario’s Work back (using risk neutral probabilities) to today Three types of nodes
9
Model Building a tree Trinomial tree (up, middle, down) Time between nodes free Work backwards Last premium Normal Premium
10
Model Last premium node In nodes where to decide to pay the last (n th ) premium V j,t =MAX (ΔPU n,t. SP j,t - P ; 0) Premium at j+1 will be passed; others paid V j,t+1 V j+1,t+1 V j-1,t+1 Don’t pay: 0 Pay: >0
11
Model Normal node Value the node looking forward Number of normal nodes depends on stepsize V j,t = Δt p x. e -rΔt. (p u V j+1,t+1 + p m V j,,t+1 +p d V j-1,,t+1 ) V j,t+1 V j+1,t+1 V j-1,t+1 V j,t pdpd pmpm pupu Normal or premium node Normal or premium node Normal or premium node Normal node
12
Model Premium node (example values) Value premium 2 1 3 Market<tariff Market>tariff -4 2 Current Future 0 1 5 Do not pay Pay premium Node
13
Model Premium node (except last premium) Decide whether to pay the premium V j,t = MAX (ΔPU m,t. SP j,t - P + Δt p x. e -rΔt. (p u V j+1,t+1 + p m V j,,t+1 +p d V j-1,,t+1 ) ; 0) V j,t+1 V j+1,t+1 V j-1,t+1 V j,t pdpd pmpm pupu Normal node Premium node
14
Results Initial policy Policy is a pure endowment, payable after five years if the insured is still alive Insured amount 100 000 Annual mortality rate of 1% Tariff interest rate at 5% Five equal premiums of 16 705,72
15
Results Value of premium payments If the value of a premium VP is nil then do not pay If it is positive then one should pay A high and low interest scenario in table (z n is zerorate until maturity, m is # premium)
16
Results Release of profit When tariffrate<market rate: no release at issue When tariffrate>market rate: full loss at issue If interest rates drop below tariff rate a loss arises due to the given guarantee on future premiums If a premium is paid and the model did not expect so, a profit will arise, attributable to “irrational behavior” The behavior of the policyholder can not become more negative then expected
17
Results In or out of the money A simple model is to consider the value of all future premiums together and the insured amounts connected to them If the future premiums are out of the money (value premiums exceeds the value of the insured amount) then exclude all premiums from calculations If the future premiums are in the money (value premiums lower then the value of the insured amount) then include all premiums in calculations This model gives essentially the same results
18
Applications Mortality (model) Assume best estimate (BE) mortality differs from tariff:q x BE = q x tariff Standard mortality formulas n p x When is small: healthy person Policy (pure endowment) is more valuable to the policyholder, because he “outperforms” the tariff mortality When is large: sick person Policy (pure endowment) is less valuable to the policyholder, he must be compensated with higher profit on interest
19
Applications Mortality (EEB) Search for Early Exercise Boundary: the line above which premium payment is irrational
20
Applications Paid up penalty (model) Assume that the paid up value of the policy is reduced with a factor when the premium is not paid Value reduction when the m th premium is the first not to be paid: . PU m,t. SP m,t Decision: max(PP m,t + FV m,t ;- . PU m,t. SP m,t ) Value in force policy can be lower than paid up value
21
Applications Paid up penalty (EEB) Study different values for and early exercise boundary
22
Conclusions Valuation of future premiums should be considered Economic rationality introduces prudent reservation Important influence on the release of profit Use of trees is complicated and time consuming In/out of the money model gives roughly same results Possible to study behavior of policyholder using economic rationality concept
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.