Presentation is loading. Please wait.

Presentation is loading. Please wait.

BPS - 5th Ed. Chapter 101 Introducing Probability.

Similar presentations


Presentation on theme: "BPS - 5th Ed. Chapter 101 Introducing Probability."— Presentation transcript:

1 BPS - 5th Ed. Chapter 101 Introducing Probability

2 BPS - 5th Ed. Chapter 102 Idea of Probability u Probability is the science of chance behavior u Chance behavior is unpredictable in the short run but has a regular and predictable pattern in the long run –this is why we can use probability to gain useful results from random samples and randomized comparative experiments

3 BPS - 5th Ed. Chapter 103 Randomness and Probability u Random: individual outcomes are uncertain but there is a regular distribution of outcomes in a large number of repetitions u Relative frequency (proportion of occurrences) of an outcome settles down to one value over the long run. That one value is then defined to be the probability of that outcome.

4 BPS - 5th Ed. Chapter 104 Relative-Frequency Probabilities u Can be determined (or checked) by observing a long series of independent trials (empirical data) –experience with many samples –simulation (computers, random number tables)

5 BPS - 5th Ed. Chapter 105 Relative-Frequency Probabilities Coin flipping:

6 BPS - 5th Ed. Chapter 106 Probability Models u The sample space S of a random phenomenon is the set of all possible outcomes. u An event is an outcome or a set of outcomes (subset of the sample space). u A probability model is a mathematical description of long-run regularity consisting of a sample space S and a way of assigning probabilities to events.

7 BPS - 5th Ed. Chapter 107 Probability Model for Two Dice Random phenomenon: roll pair of fair dice. Sample space: Probabilities: each individual outcome has probability 1/36 (.0278) of occurring.

8 BPS - 5th Ed. Chapter 108 Probability Rule 1 Any probability is a number between 0 and 1. u A probability can be interpreted as the proportion of times that a certain event can be expected to occur. u If the probability of an event is more than 1, then it will occur more than 100% of the time (Impossible!).

9 BPS - 5th Ed. Chapter 109 Probability Rule 2 All possible outcomes together must have probability 1. u Because some outcome must occur on every trial, the sum of the probabilities for all possible outcomes must be exactly one. u If the sum of all of the probabilities is less than one or greater than one, then the resulting probability model will be incoherent.

10 BPS - 5th Ed. Chapter 1010 If two events have no outcomes in common, they are said to be disjoint. The probability that one or the other of two disjoint events occurs is the sum of their individual probabilities. u Age of woman at first child birth –under 20: 25% –20-24: 33% –25+: ? } 24 or younger: 58% Rule 3 (or 2): 42% Probability Rule 3

11 BPS - 5th Ed. Chapter 1011 Probability Rule 4 The probability that an event does not occur is 1 minus the probability that the event does occur. u As a jury member, you assess the probability that the defendant is guilty to be 0.80. Thus you must also believe the probability the defendant is not guilty is 0.20 in order to be coherent (consistent with yourself). u If the probability that a flight will be on time is.70, then the probability it will be late is.30.

12 BPS - 5th Ed. Chapter 1012 Probability Rules: Mathematical Notation

13 BPS - 5th Ed. Chapter 1013 Probability Rules: Mathematical Notation Random phenomenon: roll pair of fair dice and count the number of pips on the up-faces. Find the probability of rolling a 5. P(roll a 5)= P( )+P( )+P( )+P( = 1/36 + 1/36 + 1/36 + 1/36 = 4/36 = 0.111

14 u Exercise 10.10: Choose a Canadian at random and ask “What is your mother tongue?” Here is the distribution of responses: u English – Prob. 0.63, French – 0.22, Asian/Pacific – 0.06, Other - ? u a) What prob. should replace ? u B) What is the prob. that a Canadian’s mother tongue is not English u C) What is the prob. that a Canadian’s mother tongue is a language other than English and French? BPS - 5th Ed. Chapter 1014

15 u 10.31:Describe the sample space S for each of the following random phenomenon. u A) A basketball player shoots four free throws. You record the sequene of hits and misses. u B) A basketball player shoots four free throws. You record the number of baskets she makes. u C) Can you assign probabilities to all the events/ outcomes in the previous problems? BPS - 5th Ed. Chapter 1015

16 u Exercise 10.36: Here are the probabilities of the most popular colors for vehicles in North America u White: 0.19, Silver: 0.18, Black: 0.16, Red:0.13, Gray:0.12, Blue:0.12 u A) what is the probability that a vehicle you choose has any color other than the six listed? u B) what is the probability that a randomly chosen vehicle is neither silver nor white? BPS - 5th Ed. Chapter 1016

17 BPS - 5th Ed. Chapter 1017 Discrete Probabilities u Finite (countable) number of outcomes –assign a probability to each individual outcome, where the probabilities are numbers between 0 and 1 and sum to 1 –the probability of any event is the sum of the probabilities of the outcomes making up the event –see previous slide for an example

18 BPS - 5th Ed. Chapter 1018 Continuous Probabilities u Intervals of outcomes –cannot assign a probability to each individual outcome (because there are an infinite number of outcomes) –probabilities are assigned to intervals of outcomes by using areas under density curves –a density curve has area exactly 1 underneath it, corresponding to total probability 1

19 BPS - 5th Ed. Chapter 1019 Assigning Probabilities: Random Numbers Example Random number generators give output (digits) spread uniformly across the interval from 0 to 1. Find the probability of getting a random number that is less than or equal to 0.5 OR greater than 0.8. P(X ≤ 0.5 or X > 0.8) = P(X ≤ 0.5) + P(X > 0.8) = 0.5 + 0.2 = 0.7

20 BPS - 5th Ed. Chapter 1020 Normal Probability Models u Often the density curve used to assign probabilities to intervals of outcomes is the Normal curve –Normal distributions are probability models: probabilities can be assigned to intervals of outcomes using the Standard Normal probabilities in Table A of the text (pp. 690-691) –the technique for finding such probabilities is found in Chapter 3

21 BPS - 5th Ed. Chapter 1021 Example: convert observed values of the endpoints of the interval of interest to standardized scores (z scores), then find probabilities from Table A. Normal Probability Models

22 BPS - 5th Ed. Chapter 1022 Random Variables u A random variable is a variable whose value is a numerical outcome of a random phenomenon –often denoted with capital alphabetic symbols (X, Y, etc.) –a normal random variable may be denoted as X ~ N(µ,  ) u The probability distribution of a random variable X tells us what values X can take and how to assign probabilities to those values

23 BPS - 5th Ed. Chapter 1023 Random Variables u Random variables that have a finite (countable) list of possible outcomes, with probabilities assigned to each of these outcomes, are called discrete u Random variables that can take on any value in an interval, with probabilities given as areas under a density curve, are called continuous

24 BPS - 5th Ed. Chapter 1024 Random Variables u Discrete random variables –number of pets owned (0, 1, 2, … ) –numerical day of the month (1, 2, …, 31) –how many days of class missed u Continuous random variables –weight –temperature –time it takes to travel to work

25 u exercise 10.49 and 10.50: A random number Y is chosen between 0 and 2. u A) Is the random variable Y discrete or continuous? If it is continuous, can you describe the density curve? u B) Find P(Y<=1) u C) Find P(0.5<Y<1.3) u D) Find P(Y>=0.8) BPS - 5th Ed. Chapter 1025

26 u Exercise 10.18: A study of 12000 able bodied male students in U of Illinois found that their times for the mile run were approximately Normal with mean 7.11 minutes and standard deviation 0.74. Choose a student at random from this group and call his time for the mile Y. u A) Find P(Y>=8) u B) what is the event “the student could run a mile in less than 6 minutes” in terms of Y? Find the prob. Of this event. BPS - 5th Ed. Chapter 1026

27 BPS - 5th Ed. Chapter 1027 Personal Probabilities u The degree to which a given individual believes the event in question will happen u Personal belief or judgment u Used to assign probabilities when it is not feasible to observe outcomes from a long series of trials –assigned probabilities must follow established rules of probabilities (between 0 and 1, etc.)

28 BPS - 5th Ed. Chapter 1028 Personal Probabilities u Examples: –probability that an experimental (never performed) surgery will be successful –probability that the defendant is guilty in a court case –probability that you will receive a ‘B’ in this course –probability that your favorite baseball team will win the World Series in 2020


Download ppt "BPS - 5th Ed. Chapter 101 Introducing Probability."

Similar presentations


Ads by Google