Presentation is loading. Please wait.

Presentation is loading. Please wait.

CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Gesture Recognition Using 3D Appearance and Motion Features Guangqi Ye, Jason J. Corso, Gregory D. Hager.

Similar presentations


Presentation on theme: "CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Gesture Recognition Using 3D Appearance and Motion Features Guangqi Ye, Jason J. Corso, Gregory D. Hager."— Presentation transcript:

1 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Gesture Recognition Using 3D Appearance and Motion Features Guangqi Ye, Jason J. Corso, Gregory D. Hager Computational Interaction and Robotics Lab The Johns Hopkins University Baltimore, MD

2 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Analogy Between Gesture and Speech

3 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. 4DT Platform  Previous work: J. Corso, D. Burschka, G. Hager, The 4DT: Unencumbered HCI With VICs. CVPRHCI, 2003.  Geometrically and photometrically calibrated  Known background

4 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Video Preprocessing Acquisition Rectification Background Subtraction Color Calibration

5 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. System Framework Image Preprocessing Coarse Stereo Matching Appearance/Motion Extraction Feature Clustering Gesture Recognition

6 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Visual Feature Capturing: 3D Volume  Consider limited 3D space around object  Block-based coarse stereo matching

7 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Motion Computation  Motion by differencing of stereo volume

8 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Unsupervised Learning of Feature Set  VQ: K-means approach  Choice of cluster number based on distortion analysis

9 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Temporal Gesture Modeling  6-state discrete forward HMMs  Multilayer Neural Network Aligning all sequences to have equal length 3-layers, 50 hidden nodes

10 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Experiment: Gesture Vocabulary Push Toggle

11 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Gesture Vocabulary Swipe Left Swipe Right

12 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Gesture Vocabulary Twist Clockwise Anti-clockwise

13 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Different Feature Data Sets  Appearance volume  5x5x5=125  10x10x10=1000  Motion volume  Concatenation of appearance and motion e.g.,(125-appearance, 1000-d motion)  Combination of clustering result of appearance and motion  Form a 2-d vector of cluster identity e.g., (3, 2)

14 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Gesture Recognition  Training: >100 sequences for each gesture  Test: >70 sequences for each gesture  Combination achieves best results Feature SetClustersHMMNN Appearance 899.5 100.098.8 Motion 1598.498.197.786.3 Concatenation 1898.999.098.987.7 Combination 8*15=120100.0 96.6

15 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Real-time Implementation Demo

16 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Conclusion  Novel approach to extract 3D appearance and motion cues without tracking  VQ clustering to learn gesteme  Modeling dynamic gestures using HMM, NN  Real-time implementation on 4DT  Extensive experiments achieve high recognition accuracy

17 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Thanks

18 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. 3D Appearance Volume  Comprehensive color normalization  Coarse disparity map Consider local images of m x n patches, perform pair-wise image matching between patches  Disparity search range [0, ( p-1 ) * w ]  Dimensionality 3D volume m*n*p

19 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Gesture Recognition  HMM modeling on collapsed sequences Raw: 6 6 6 5 5 5 5 5 4 4 4 4 1 1 Collapsed: 6 5 4 1  Without considering duration Feature SetTrainingTest Appearance 88.386.1 Motion 98.496.6 Concatenation 90.889.0 Combination 99.898.8

20 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. 4DT Platform  Gestures in visual HCI: popular choice  Manipulative gesture modeling without tracking Difficulty of reliable tracking of hand Complexity of hand modeling  3D data acquisition Limitation of 2D cues for modeling hand Stereo matching Special sensors

21 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Properties of 4DT  Known background & object properties

22 CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C.


Download ppt "CVPR Workshop on RTV4HCI 7/2/2004, Washington D.C. Gesture Recognition Using 3D Appearance and Motion Features Guangqi Ye, Jason J. Corso, Gregory D. Hager."

Similar presentations


Ads by Google