Download presentation
Presentation is loading. Please wait.
Published byPrimrose Briggs Modified over 9 years ago
1
SMA [CII] 158um 334GHz, 20hrs BRI1202-0725 z=4.7 HyLIRG (10 13 L o ) pair: Quasar host Obscured SMG SFR ~ 10 3 ; M H2 ~ 10 11 Iono ea 2007 Salome ea. 2012 + + 4”4” HST 814 Hu ea 96 QSO SMG
2
SMA 20hrs ALMA SV 20min, 16 ants [CII] in 1202-0725 Wagg ea 334GHz
3
ALMA/JVLA revolution: Cool gas in distant galaxies 54x12m, 12x7m Frequencies = 80 GHz to 900 GHz Resolution = 20mas at 800 GHz Sensitivity > 100x submm sensitivity Order of magnitude, or more, improvement from 1 GHz to 1 THz! 2013: Fully operational 80x Bandwidth (8 GHz), with 4000 chans 5x freq coverage (1 to 50 GHz, continuous) 10x continuum sensitivity Spatial resolution ~ 40mas at 43 GHz
4
100 M o yr -1 at z=5 Low J CO emission: total gas mass, dynamics High density gas tracers (HCN, HCO+) Synch. + Free-Free = star formation High J molecular lines: gas excitation, physical conditions Dust continuum = star form. Atomic FIR fine structure lines: ISM gas coolant cm to submm diagnostics of galaxy formation
5
ARAA: Cool gas in high redshift galaxies Carilli & Walter 2013 arXiv1301.0371 200 galaxies detected in CO at z>1 40 detected in [CII] or [CI] FSL, other molecules Gas dynamical imaging in multiple species/transitions cm mm
6
Rapid rise in last 3 years: New instrumentation (Bure, VLA, GBT) New population: ‘normal’ color-selected SF galaxies (sBzK/BX/BM…) HyLIRG (FIR~10 13 L o ) ‘starburst’ (SMG/QSO): SFR ≥ 10 3 M o /yr ρ ≤ 10 -5 Mpc -3 Color-selected (FIR≤10 12 L o ) ‘main sequence’: SFR ≤ 10 2 M o /yr, ρ ≥ 10 -4 Mpc -3 Cool gas detections at z>1 over time
7
Hyper-starbursts (SMG/QSOs): Early formation of elliptical galaxies in dense environments in major starburst events at t univ < 2Gyr M(H 2 ) ~ 10 10-11 (α/0.8) M o = ‘fuel for star formation’ CO gas kinematics: strong gravitational interaction (tidal bridges/tails) => merging gas rich galaxies Some cases of large, clumpy, rotating disks ~ 10kpc, v rot ~ 300 km/s Li ea JVLA CO 2-1 BRI 1335-04 z=4.4 Riechers ea 1”1” T B = 30 to 60K
8
0.3mJy SMG GN20 z=4.0 ‘protocluster’ JVLA CO 2-1 imaging GN20.2a 4.051 GN20 z=4.055 GN20.2b 4.056 0.4mJy 0.7mJy 6x over-density: 19 LBGs at z ph ~ 4 within ~ 1’ JVLA 45GHz, BW=256MHz: CO2-1 from 3 SMGs + + + + + + + + + + 5”5”
9
HST/CO/SUBMM 1”1” + GN20 z=4.05 SFR = 2000 M o /yr Highly obscured at I band CO: large, rotating, disk ~ 14 kpc M dyn = 5.4 10 11 M o M gas = 1.3 10 11 (α/0.8) M o CO 2-1 Mom0 Mom1 1”1” Hodge ea 2012 -250 km/s +250 km/s 0.25”
10
T b ~ 20K, σ v ~ 100 km/s Self-gravitating super-GMCs? M dyn ~ M gas ~ 10 9 (α/0.8) M o 0.5” State of art: CO at z=4 at HST-resolution 0.15” ~ 1kpc Hodge ea 2012
11
JVLA 60” field, 256MHz band: CO 1-0 from ‘color selected’ galaxy at z=1.5 z=1.5 CO1-0 CO2-1 z=4.0 Serendipity becomes the norm! Every observation with JVLA at ≥ 20GHz will detect CO in distant galaxies
12
Deep fields: thousands SF color selected galaxies z ~ 1 to 3 SFR ~ 10 – 100 M o /yr: ‘typical z~2 SF galaxies’ HST => clumpy disk ~ 1”, punctuated by massive SF regions Define a ‘main sequence’ in M star – SFR (vs. ‘starburst’) Common ~ 5 arcmin -2 ~ 100x SMG 10kpc sBzK/BX/BM – ‘main sequence’ Elbaz ea SMGs M star SFR Main Sequence
13
Daddi ea (2010): Bure detected CO 2-1 z~1.5 (massive) MS galaxies 6 of 6 sBzK detected in CO CO luminosities approaching SMGs but, FIR (SFR) ≤ 10% SMGs Massive gas reservoirs without hyper-starbursts M gas ≥ 10 10 (α/4) M o
14
MS galaxies: Baryon fraction dominated by cool gas, not stars z~1.5 MW α=4 z~0 spirals Daddi ea 2010 f gas increases with decreasing M star ? Tacconi ea 2013 Narayanan α 0.5
15
7kpc + 300 km/s -300 km/s GN20 z=4.0 M dyn = 5.4 10 11 M o SB M dyn : using CO imaging, w. norm. factors from simulations Subtract M *, M DM, assume rest is M gas => MS ~ MW: α CO ~ 4 M o /(K km/s pc 2 ) SMG ~ nuc. SB: α CO ~ 0.8 Conversion factor: M(H 2 ) = α L’ CO Consistent with: Analysis based on SF laws (Genzel) Analysis of dust-to-gas ratio vs. metallicity (Magdis ea) Radiative transfer modeling (Ivison) Tacconi ea. 2010 M dyn = 2 10 11 M o z=1.1 MS
16
quasars ~ constant T b to high order ~ nuc. SB => n ≥ 10 4 cm -3, T ≥ 50K SMGs: intermediate between nuc. SB and MW Often large, cooler gas reservoirs MS/CSG: lowest MW CO excitation Quasars SMGs MS M82 MW ν2ν2....
17
Star formation ‘laws’: relating gas to star formation Overall, PL index = 1.4 Possibly 2 sequences (Genzel, Daddi) starburst: t d ~ few (α/0.8) x 10 7 yrs disk: t d ~ few (α/4) x 10 8 yrs Both: t d << t hubble α=0.8 α=4 SB MS SFR M gas
18
Evolution of gas fraction: epoch of peak cosmic SF rate density (z~2) = epoch of gas-dominated disks All star forming disk galaxies w. M * ≥ 10 10 M o All points assume α~ 4 => empirical ratio ~ L’ CO /R Good news for blind CO searches! (1+z) 2 ~ L’ CO /R
19
[CII] 158um FSL line Brightest line from cool gas in star forming galaxies: ~0.3% of FIR for MW-type galaxies FIR > 10 11 : large scatter (~ 20dB) AGN-dominated: low SF dominated: ‘MW’ [CII] powerful tool for: Gas dynamics (CNM – WIM) Redshift determinations z>6 Low metallicity: enhanced [CII]/FIR (lower dust attenuation => large UV heating zone) Mag. Clouds MW 11 Carilli & Walter 2013
20
Aztec 3: massive cluster formation at z=5.3 Most distant SMG: SFR ~ 1800, M gas ~ 5e10 (α/0.8) M o Most distant proto-cluster: 11 LBGs in ~ 1’; 5 w. z spec ~ 5.30 Discover 2 nd dust obscured star forming galaxy (450 M o /yr) Riechers ea rms = 70uJy Capak ea 2012 ALMA 1hr, 17ant
21
ALMA early science: [CII] imaging, 2hrs, 17ant Easily detect SMG Detect ‘dark CII emitter’ [CII]/FIR ≤ 0.001 ~ ‘starburst/AGN’ SMG tidal tail or outflow ~ 10kpc Detect LBG group in [CII] No continuum => SFR < 80 M o /yr [CII]/FIR > 0.0023 ~ MW Possible second DCE?
22
Imaging gas dyn: interacting LBG group ~ 7kpc, FWHM < 200 km/s Serendipity: discover DCE1 & 2 LBGs easily detected w. ALMA-17 Don’t select on dust for [CII] search! 1”1”
23
ALMA Cycle 0: 5/5 detected [CII] Sizes ~ 2-3kpc Vel grad. => M dyn ~ few e10 M o ~ 15 x value at low z CO profiles differ from [CII] +300 km/s -200 km/s 300GHz, 0.5” res 1hr, 17ant Dust Wang ea Gas Pushing back to first light and cosmic reionization: z ≥ 6 quasar host galaxies z=6.13
24
GP effect: damped profile of neutral IGM wipes-out Lya line: τ IGM > 5 [CII] and dust detected with Bure => SFR ~ 300 M o /yr J1120+0641: z=7.084 Most distant z spec Simcoe; Mortlock;Venemans
25
Drop-out technique: z~9 galaxies? SFR ≤ 10 M o /yr: reionize the Universe? Difficulty: z spec (no Lya!) ALMA: [CII] from 5M o /yr at z=7 in 1hr; 8GHz; BW => Δz ~ 0.3 Low Metalicities => [CII]/FIR increases! Band 5 (z=8 to 11) under development Bouwens et al. 2012 Pushing further into reionization: z~9 near-IR dropouts z=7.1 quasar
26
Cool Gas History of the Universe SFHU[environment, luminosity, stellar mass] delineated back to reionization SF laws => SFHU is reflection of CGHU: study of galaxy evolution is shifting to CGHU (source vs sink) w. JVLA/ALMA Epoch of galaxy assembly = epoch of gas dominated disks [CII] detected in LBG/LAE: key gas dynamical tracer and ‘redshift machine’ SF Law SFR M gas
28
JVLA CO 2-1 z=4.4 Riechers ea 1”1” Hyper-starbursts: gas in QSO hosts 30% quasar hosts are HyLIRG: SFR > 10 3 M o /yr => coeval form. of SMBH and massive host gal. 1”1” z=6.42 1” ~ 5.5kpc CO3-2 VLA + 0.15” T B ~ 25K Walter ea
29
Hyper-starbursts (SMG/QSOs): Early formation of large elliptical galaxies in dense environments in major starburst events at t univ < 2Gyr Clear gas kinematic signs of strong gravitational interaction (tidal bridges/tails) => merging gas rich galaxies Also cases of large, clumpy, rotating disks ~ 10kpc, v rot ~ 300 km/s Sub-kpc-resolution => self gravitating super-GMCs? Possible evidence for AGN outflows Li ea
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.