Download presentation
Presentation is loading. Please wait.
Published byClinton Gibbs Modified over 9 years ago
1
LAW OF SINES: THE AMBIGUOUS CASE
2
Review Identify if the given oblique triangle can be solved using the Law of Sines or the Law of Cosines 1. X = 21 0, Z = 65 0 and y = 34.7 2. s = 73.1, r = 93.67 and T = 65 0 3. a = 78.3, b = 23.5 and c = 36.8 Law of Sines Law of Cosines
3
Law of Sines: The Ambiguous Case Given: lengths of two sides and the angle opposite one of them (S-S-A)
4
AMBIGUOUS Open to various interpretations Having double meaning Difficult to classify, distinguish, or comprehend
5
Always set your triangle up this way… Given angle here Side opposite here Other given side here
6
Possible Outcomes Case 1: If is acute and the side opposite the given angle < the other given side. A C B b a c h = b sin A a. If a < h A C B b a c h NO SOLUTION
7
Possible Outcomes Case 1: If is acute and the side opposite the given angle < the other given side. AC B b a c h = b sin A b. If a = h A C B b = a c h 1 SOLUTION
8
Possible Outcomes Case 1: If is acute and the side opposite the given angle < the other given side. AC B b a c h = b sin A b. If a > h A C B b c h 2 SOLUTIONS aa B 180 -
9
Possible Outcomes Case 2: If is obtuse and the side opposite the given angle > the other given side. C A B a b c ONE SOLUTION
10
Possible Outcomes Case 2: If is obtuse and the side opposite the given angle the other given side. C A B a b c NO SOLUTION
11
SUMMARY is acute or is obtuse Side opposite < other side Side opposite > other side Side opposite < other side FIND HEIGHT: h = other side sin Side opposite < h: Side opposite = h: Side opposite > h: No Solution 1 Solution 2 Solutions 1 Solution No Solution
12
Given: ABC where a = 22 inches b = 12 inches m A = 42 o EXAMPLE 1 Find m B, m C, and c. (acute) a>b m A > m B SINGLE–SOLUTION CASE
13
sin A = sin B a b Sin B 0.36498 m B = 21.41 o or 21 o Sine values of supplementary angles are equal. The supplement of B is B 2. m B 2 =159 o
14
m C = 180 o – (42 o + 21 o ) m C = 117 o sin A = sin C a c c = 29.29 inches SINGLE–SOLUTION CASE
15
Given: ABC where c = 15 inches b = 25 inches m C = 85 o EXAMPLE 2 Find m B, m C, and c. (acute) c < b c ? b sin C 15 < 25 sin 85 o NO SOLUTION CASE
16
sin A = sin B a b Sin B 1.66032 m B = ? Sin B > 1 NOT POSSIBLE ! Recall: – 1 sin 1 NO SOLUTION CASE
17
Given: ABC where b = 15.2 inches a = 20 inches m B = 110 o EXAMPLE 3 Find m B, m C, and c. (obtuse) b < a NO SOLUTION CASE
18
sin A = sin B a b Sin B 1.23644 m B = ? Sin B > 1 NOT POSSIBLE ! Recall: – 1 sin 1 NO SOLUTION CASE
19
Given: ABC where a = 24 inches b = 36 inches m A = 25 o EXAMPLE 4 Find m B, m C, and c. (acute) a < b a ? b sin A24 > 36 sin 25 o TWO – SOLUTION CASE
20
sin A = sin B a b Sin B 0.63393 m B = 39.34 o or 39 o The supplement of B is B 2. m B 2 = 141 o m C 1 = 180 o – (25 o + 39 o ) m C 1 = 116 o m C 2 = 180 o – (25 o +141 o ) m C 2 = 14 o
21
sin A = sin C a c 1 c 1 = 51.04 inches sin A = sin C a c 2 c = 13.74 inches
22
Final Answers: m B 1 = 39 o m C 1 = 116 o c 1 = 51.04 in. EXAMPLE 3 TWO – SOLUTION CASE m B 2 = 141 o m C 2 = 14 o C 2 = 13.74 in.
23
SEATWORK: (notebook) Answer in pairs. Find m B, m C, and c, if they exist. 1 ) a = 9.1, b = 12, m A = 35 o 2) a = 25, b = 46, m A = 37 o 3) a = 15, b = 10, m A = 66 o
24
Answers: 1 )Case 1: m B=49 o,m C=96 o,c=15.78 Case 2: m B=131 o,m C=14 o,c=3.84 2)No possible solution. 3)m B=38 o,m C=76 o,c=15.93
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.