Download presentation
Presentation is loading. Please wait.
Published byAbraham Baker Modified over 9 years ago
1
Inferring gene regulatory networks from transcriptomic profiles Dirk Husmeier Biomathematics & Statistics Scotland
2
Overview Introduction Application to synthetic biology Lessons from DREAM
3
Network reconstruction from postgenomic data
4
Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks
5
Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks
6
direct interaction common regulator indirect interaction co-regulation Pairwise associations do not take the context of the systeminto consideration Shortcomings
7
Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks
8
Conditional Independence Graphs (CIGs) 2 2 1 1 Direct interaction Partial correlation, i.e. correlation conditional on all other domain variables Corr(X 1,X 2 |X 3,…,X n ) Problem: #observations < #variables Covariance matrix is singular strong partial correlation π 12 Inverse of the covariance matrix
9
Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks
10
Model Parameters q Probability theory Likelihood
11
1) Practical problem: numerical optimization q 2) Conceptual problem: overfitting ML estimate increases on increasing the network complexity
12
Overfitting problem True pathway Poorer fit to the data Equal or better fit to the data
13
Regularization E.g.: Bayesian information criterion Maximum likelihood parameters Number of parameters Number of data points Data misfit term Regularization term
14
Complexity LikelihoodBIC
15
Model selection: find the best pathway Select the model with the highest posterior probability: This requires an integration over the whole parameter space:
16
Problem: huge computational costs q
17
Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks
18
Friedman et al. (2000), J. Comp. Biol. 7, 601-620 Marriage between graph theory and probability theory
19
Bayes net ODE model
20
Model Parameters q Bayesian networks: integral analytically tractable!
21
UAI 1994
22
[A]= w1[P1] + w2[P2] + w3[P3] + w4[P4] + noise Linearity assumption A P1 P2 P4 P3 w1 w4 w2 w3
23
t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Homogeneity assumption
24
Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks
25
Example: 4 genes, 10 time points t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10
26
t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Standard dynamic Bayesian network: homogeneous model
27
Limitations of the homogeneity assumption
28
Our new model: heterogeneous dynamic Bayesian network. Here: 2 components t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10
29
t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Our new model: heterogeneous dynamic Bayesian network. Here: 3 components
30
Learning with MCMC q k h Number of components (here: 3) Allocation vector
31
Learning with MCMC q k h Number of components (here: 3) Allocation vector
32
Non-homogeneous model Non-linear model
33
[A]= w1[P1] + w2[P2] + w3[P3] + w4[P4] + noise BGe: Linear model A P1 P2 P4 P3 w1 w4 w2 w3
34
Can we get an approximate nonlinear model without data discretization? y x
35
Idea: piecewise linear model y x
36
t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Inhomogeneous dynamic Bayesian network with common changepoints
37
Inhomogenous dynamic Bayesian network with node-specific changepoints t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10
38
NIPS 2009
39
Non-stationarity in the regulatory process
40
Non-stationarity in the network structure
41
Flexible network structure.
42
Flexible network structure with regularization
45
ICML 2010
46
Morphogenesis in Drosophila melanogaster Gene expression measurements over 66 time steps of 4028 genes (Arbeitman et al., Science, 2002). Selection of 11 genes involved in muscle development. Zhao et al. (2006), Bioinformatics 22
47
Transition probabilities: flexible structure with regularization Morphogenetic transitions: Embryo larva larva pupa pupa adult
50
Overview Introduction Application to synthetic biology Lessons from DREAM
54
Can we learn the switch Galactose Glucose? Can we learn the network structure?
55
NIPS 2010
56
Node 1 Node i Node p Hierarchical Bayesian model
60
Node 1 Node i Node p Hierarchical Bayesian model
61
Exponential versus binomial prior distribution Exploration of various information sharing options
62
Task 1: Changepoint detection Switch of the carbon source: Galactose Glucose
64
Task 2: Network reconstruction Precision Proportion of identified interactions that are correct Recall Proportion of true interactions that we successfully recovered
65
BANJO: Conventional homogeneous DBN TSNI: Method based on differential equations Inference: optimization, “best” network
67
Sample of high-scoring networks
68
Feature extraction, e.g. marginal posterior probabilities of the edges
69
Galactose
70
Glucose
72
PriorCouplingAverage AUC None 0.70 ExponentialHard0.77 BinomialHard0.75 BinomialSoft0.75 Average performance over both phases: Galactose and glucose
73
How are we getting from here …
74
… to there ?!
75
Overview Introduction Application to synthetic biology Lessons from DREAM
76
DREAM: Dialogue for Reverse Engineering Assessments and Methods International network reconstruction competition: June-Sept 2010 Network# Transcription Factors # Genes# Chips Network 1 (in silico) 1951643805 Network 2992810160 Network 33344511805 Network 43335950536
77
Marco Grzegorczyk University of Dortmund Germany Frank Dondelinger BioSS / University of Edinburgh United Kingdom Sophie Lèbre Université de Strasbourg France Our team Andrej Aderhold BioSS / University of St Andrews United Kingdom
78
Our model: Developed for time series Data: Different experimental conditions, perturbations (e.g. ligand injection), interventions (e.g. gene knock-out, overexpression), time points How do we get an ordering of the genes?
79
PCA
80
SOM
81
No time series Use 1-dim SOM to get a chip order
82
Ordering of chips changepoint model
83
Problems with MCMC convergence Network# Transcription Factors # Genes# Chips Network 1 (in silico) 1951643805 Network 2992810160 Network 33344511805 Network 43335950536
84
Problems with MCMC convergence Network# Transcription Factors # Genes# Chips Network 1 (in silico) 1951643805 Network 2992810160 Network 33344511805 Network 43335950536 PNAS 2009
85
[A]= w1[P1] + w2[P2] + w3[P3] + w4[P4] + noise Linear model A P1 P2 P4 P3 w1 w4 w2 w3
86
L1 regularized linear regression
87
Problems with MCMC convergence Network# Transcription Factors # Genes# Chips Network 1 (in silico) 1951643805 Network 2992810160 Network 33344511805 Network 43335950536
88
Problems with MCMC convergence Network# Transcription Factors # Genes# Chips Network 1 (in silico) 1951643805 Network 2992810160 Network 33344511805 Network 43335950536
89
Assessment Participants Had to submit rankings of all interactions Organisers Computed areas under 1)Precision-recall curves 2)ROC curves (plotting sensitivity=recall against specificity)
90
Uncertainty about the best network structure Limited number of experimental replications, high noise
91
Sample of high-scoring networks
92
Feature extraction, e.g. marginal posterior probabilities of the edges
93
Sample of high-scoring networks Feature extraction, e.g. marginal posterior probabilities of the edges High-confident edge High-confident non-edge Uncertainty about edges
94
ROC curves True positive rate Sensitivity False positive rate Complementary specificity
95
Definition of metrics Total number of true edges Total number of predicted edges Total number of non-edges Total number of true edges
96
The relation between Precision-Recall (PR) and ROC curves
97
Better performance
98
Assessment Participants Had to submit rankings of all interactions Organisers Computed areas under 1)Precision-recall curves 2)ROC curves (plotting sensitivity=recall against specificity)
101
Proportion of recovered true edges Proportion of avoided non-edges AUROC = 0.5
103
Joint work with Wolfgang Lehrach on ab initio prediction of protein interactions AUROC= 0.61,0.67,0.67
105
ICML 2006
106
The relation between Precision-Recall (PR) and ROC curves Better performance
107
Potential advantage of Precision-Recall (PR) over ROC curves Large number of negative examples (TN+FP) Large change in FP may have a small effect on the false positive rate Large change in FP has a strong effect on the precision Small difference Large difference
112
Room for improvement: Higher-dimensional changepoint process Perturbations Experimental conditions
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.