Download presentation
Presentation is loading. Please wait.
Published byAlice Skinner Modified over 9 years ago
1
Tunka-133: results and status L.A.Kuzmichev (MSU SINP) On behalf of the Tunka Collaboration 4.06.2012 23th ECRS, MOSCOW
2
S.F.Beregnev, S.N.Epimakhov, N.N. Kalmykov, N.I.KarpovE.E. Korosteleva, V.A. Kozhin, L.A. Kuzmichev, M.I. Panasyuk, E.G.Popova, V.V. Prosin, A.A. Silaev, A.A. Silaev(ju), A.V. Skurikhin, L.G.Sveshnikova I.V. Yashin, Skobeltsyn Institute of Nucl. Phys. of Moscow State University, Moscow, Russia; N.M. Budnev, O.A. Chvalaev, O.A. Gress, A.V.Dyachok, E.N.Konstantinov, A.V.Korobchebko, R.R. Mirgazov, L.V. Pan’kov, A.L.Pahorukov, Yu.A. Semeney, A.V. Zagorodnikov Institute of Applied Phys. of Irkutsk State University, Irkutsk, Russia; B.K. Lubsandorzhiev, B.A. Shaibonov(ju), N.B. Lubsandorzhiev Institute for Nucl. Res. of Russian Academy of Sciences, Moscow, Russia; V.S. Ptuskin IZMIRAN, Troitsk, Moscow Region, Russia; Ch. Spiering, R. Wischnewski DESY-Zeuthen, Zeuthen, Germany; A.Chiavassa Dip. di Fisica Generale Universita' di Torino and INFN, Torino, Italy. A.Haungs, F. Schroeder Karlsruhe Institute of Technology, Karlsruhe, Germany Tunka Collaboration
3
OUTLINE 1. Tunka-133. 2. Energy spectrum. 2. Mass composition ( V.Prosin report, at next session) 3. Plan for the Tunka-133 upgrading.
4
Tunka-133 – 1 km 2 “dense” EAS Cherenkov light array Energy threshold 10 15 eV Accuracy: core location ~ 10 m energy resolution ~ 15% X max < 25 g∙cm -2
5
Tunka-133: 19 clusters, 7 detectors in each cluster Optical cable Cluster Electronic box DAQ center PMT EMI 9350 Ø 20 cm 4 channel FADC boards 200 MHz, 12 bit
6
4 channel FADC Cherenkov light pulses at two detectors of a cluster at the core distance of ~ 700 m 1. ADC AD9430, 12 bit, 200 MHz 2. FPGA XILINX Spartan-3 t ( 5 ns)
7
1 км 2011 To the ultra-high energy! Tunka-133 is extended by 6 distant external clusters
9
Energy reconstruction E = A (Q200) g Density of Cherenkov light at core distance of 200 m For 10 16 – 10 18 eV (CORSIKA): g = 0.94±0.01
10
Absolute energy calibration : The QUEST experiment ( Cherenkov detectors at EAS-TOP) P – steepness of LDF ( Lateral Distribution Function) p Integral spectrum Normalization point for Tunka-133 σ sys (E) = 8%
11
3 winter seasons of the array operation: 165 moonless nights with good weather, 971 hours Tunka-133 was installed in 2009 - 2009 – 2010: 286 hours of good weather ( November 2009 – March 2010) - 2010 – 2011: 305 hours of good weather (October 2010 – April 2011) -2011 – 2012 : 380 hours of good weather (October 2011 – April 2012) > 6 10 6 events with energy 10 15 eV.
12
IN-events: Core position inside circle: R < 450m Zenith angle < 45° 2009-2012 >10 16 eV: 63490 >10 17 eV: 605 OUT- events: R <800 m > 10 17 eV: 1900 800 m 450m
14
Tns T ns = (R+200/R 0 ) 2 ×3.3 ns Shower front
15
ADF LDF ADF – amplitude distant function is used for core location WDF – width distant function WDF
17
Shower front
19
Accuracy of out -events reconstruction With external clustersWithout external clusters = 0.02 E1 E2 σ (lg (E1/E2)) =0.05
20
1900 events > 10 17 eV 6 21 48 Combined energy soectrum
21
Comparison of spectras 2009 -2011 2009-2012
22
γ~ 3.0 γ~ 3.3 Second knee ~3 ·10 17 eV
23
γ 1 = 3.24 ±0.01 γ 2 = 2.97 ±0.01 γ 3 = 3.4 ±0.14
24
γ 3 = 3.12 ±0.05
25
OUT-events in 1000 m radius Second knee at (2-3) 10 17 eV seems to be more adequate to the data
29
E shift = 0.95· E 0 σ sys (E) = 8% At E= 6 10 15 eV From QUEST experiment σ sys (E) = 15% At 10 18 eV due to uncertainty in g
31
Conclusions 1. The spectrum in the energy range of 10 16 to 10 18 eV cannot be fitted with single power law index 3.24 ±0.01 (6·10 15 – 2·10 16 eV) 2.97 ±0.01 (2·10 16 – 10 17 eV) 3.40 ± 0.14 (3 ·10 17 – 10 18 eV) 2.There is an indication on the second knee at ~3·10 17 eV 3. Tunka spectrum = K-Gr spectrum inside energy reconstruction systimatics. The key question – to increase accuracy of absolute energy calibration. Is it possible to have 5% accuracy? 4. More statistics is needed at the energy range 10 17 – 10 18 eV The array will continue data taking for another 4-5 seasons.
32
Plans for upgrading I 1. Deployment of scintillation array for the absolute energy calibration at 3·10 16 – 10 17 eV (the new QUEST experiment). 2. Deployment of fluorescent detector at 7-10 km distance from the array for joint operation.
33
Absolute energy calibration experiment. Repeating the “QUEST” at 10 16 -10 17 eV -20 scintillation counters, 10 m 2 Lg (Ne / E, Tev) p -P -Fe Zenith-angle: 0º -45º Energy: 10 16 – 10 17 eV P – steepness of LDF 2000 events with E >3·10 16 eV per season
34
Cross calibration of Cherenkov light and fluorescent light methods. Image detector from TUS experiment 7-10 км S= 2 -10 м 2 Угол обзора ± 7 град
35
Frenel mirror for TUS experiment
36
Plan for upgrading II -Net of radio antennae ( poster of F.Schreoder) Tunka-REX ( Radio Extension) - Gamma astronomy at Tunka (report of M.Tluzcykont)
37
HiSCORE Tunka : 2013 M.Tluczykont, July 6, Friday F.Shreoder, poster,
38
Thank you
39
20-30km P, A For E e >25 MeV V e > C/ n – light velocity in air Cherenkov light Photons detectors Q tot ~ E Atmosphere as a huge calorimeter E (PeV) = 0.4 Q(175) ph· ev -1 cm -2 Lateral Distribution Function
40
Advantage of Cherenkov Technique: 1. Good energy resolution - up to 15% 2. Good accuracy of X max - 20 -25 g/cm 2 3. Good angular resolution - 0.1 – 0.3 deg 4. Low cost – Tunka-133 – 1 km 2 array: 0.5 10 6 Eur ( construction and deployment) + 0.2 10 6 Eur( PMTs) 100 km 2 array - 10 7 Eur Disadvantage: 1.Small time of operation ( moonless, cloudless nights) – 5-10%
41
“ Bump” ( at 8·10 17 eV ) and background
42
New approach to core reconstruction A(R) = A(400)·((R/400+1)/2) -b Q(R) = Q(300)·((R/300+1)/2) -b QDF
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.