Presentation is loading. Please wait.

Presentation is loading. Please wait.

8.5 – Using Properties of Logarithms. Product Property:

Similar presentations


Presentation on theme: "8.5 – Using Properties of Logarithms. Product Property:"— Presentation transcript:

1 8.5 – Using Properties of Logarithms

2 Product Property:

3 Product Property: log b mn

4 Product Property: log b mn = log b m

5 Product Property: log b mn = log b m + log b n

6 Ex.

7 Product Property: log b mn = log b m + log b n Ex. log 9 5x

8 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5

9 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5 + log 9 x

10 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5 + log 9 x Quotient Property:

11 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5 + log 9 x Quotient Property: log b m n

12 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5 + log 9 x Quotient Property: log b m = log b m n

13 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5 + log 9 x Quotient Property: log b m = log b m - log b n n

14 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5 + log 9 x Quotient Property: log b m = log b m - log b n n Ex.

15 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5 + log 9 x Quotient Property: log b m = log b m - log b n n Ex. log 9 x 9

16 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5 + log 9 x Quotient Property: log b m = log b m - log b n n Ex. log 9 x = log 9 x 9

17 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5 + log 9 x Quotient Property: log b m = log b m - log b n n Ex. log 9 x = log 9 x – log 9 9 9

18 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5 + log 9 x Quotient Property: log b m = log b m - log b n n Ex. log 9 x = log 9 x – log 9 9 9 Power Property:

19 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5 + log 9 x Quotient Property: log b m = log b m - log b n n Ex. log 9 x = log 9 x – log 9 9 9 Power Property: log b m p

20 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5 + log 9 x Quotient Property: log b m = log b m - log b n n Ex. log 9 x = log 9 x – log 9 9 9 Power Property: log b m p = plog b m

21 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5 + log 9 x Quotient Property: log b m = log b m - log b n n Ex. log 9 x = log 9 x – log 9 9 9 Power Property: log b m p = plog b m

22 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5 + log 9 x Quotient Property: log b m = log b m - log b n n Ex. log 9 x = log 9 x – log 9 9 9 Power Property: log b m p = plog b m Ex.

23 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5 + log 9 x Quotient Property: log b m = log b m - log b n n Ex. log 9 x = log 9 x – log 9 9 9 Power Property: log b m p = plog b m Ex. log 9 x 7

24 Product Property: log b mn = log b m + log b n Ex. log 9 5x = log 9 5 + log 9 x Quotient Property: log b m = log b m - log b n n Ex. log 9 x = log 9 x – log 9 9 9 Power Property: log b m p = plog b m Ex. log 9 x 7 = 7log 9 x

25 Ex. 2 Solve the following equations. a. 3 log 5 x – log 5 4 = log 5 16

26 Ex. 2 Solve the following equations. a. 3 log 5 x – log 5 4 = log 5 16 log 5 x 3 – log 5 4 = log 5 16

27 Ex. 2 Solve the following equations. a. 3 log 5 x – log 5 4 = log 5 16 log 5 x 3 – log 5 4 = log 5 16 log 5 x 3 = log 5 16 4

28 Ex. 2 Solve the following equations. a. 3 log 5 x – log 5 4 = log 5 16 log 5 x 3 – log 5 4 = log 5 16 log 5 x 3 = log 5 16 4

29 Ex. 2 Solve the following equations. a. 3 log 5 x – log 5 4 = log 5 16 log 5 x 3 – log 5 4 = log 5 16 log 5 x 3 = log 5 16 4 x 3 = 16 4

30 Ex. 2 Solve the following equations. a. 3 log 5 x – log 5 4 = log 5 16 log 5 x 3 – log 5 4 = log 5 16 log 5 x 3 = log 5 16 4 x 3 = 16 4 x 3 = 64

31 Ex. 2 Solve the following equations. a. 3 log 5 x – log 5 4 = log 5 16 log 5 x 3 – log 5 4 = log 5 16 log 5 x 3 = log 5 16 4 x 3 = 16 4 x 3 = 64 x = 4

32 b. log 4 x – log 4 (x – 6) = 2

33 log 4 x = 2 x – 6

34 b. log 4 x – log 4 (x – 6) = 2 log 4 x = 2 x – 6 Change to exponential form!!!

35 b. log 4 x – log 4 (x – 6) = 2 log 4 x = 2 x – 6 4 2 = x x – 6

36 b. log 4 x – log 4 (x – 6) = 2 log 4 x = 2 x – 6 4 2 = x x – 6 16 = x x – 6

37 b. log 4 x – log 4 (x – 6) = 2 log 4 x = 2 x – 6 4 2 = x x – 6 16 = x 1 x – 6

38 b. log 4 x – log 4 (x – 6) = 2 log 4 x = 2 x – 6 4 2 = x x – 6 16 = x x – 6 16(x – 6) = x

39 b. log 4 x – log 4 (x – 6) = 2 log 4 x = 2 x – 6 4 2 = x x – 6 16 = x x – 6 16(x – 6) = x 16x – 96 = x

40 b. log 4 x – log 4 (x – 6) = 2 log 4 x = 2 x – 6 4 2 = x x – 6 16 = x x – 6 16(x – 6) = x 16x – 96 = x 15x = 96

41 b. log 4 x – log 4 (x – 6) = 2 log 4 x = 2 x – 6 4 2 = x x – 6 16 = x x – 6 16(x – 6) = x 16x – 96 = x 15x = 96 x = 96/15

42 b. log 4 x – log 4 (x – 6) = 2 log 4 x = 2 x – 6 4 2 = x x – 6 16 = x x – 6 16(x – 6) = x 16x – 96 = x 15x = 96 x = 96/15 x = 32/5


Download ppt "8.5 – Using Properties of Logarithms. Product Property:"

Similar presentations


Ads by Google