Download presentation
Presentation is loading. Please wait.
Published byElizabeth Evans Modified over 9 years ago
1
6.1 Using Properties of Exponents p. 323
2
Properties of Exponents a&b are real numbers, m&n are integers Follow along on page 323. Product Property : a m * a n =a m+n Power of a Power Property : (a m ) n =a mn Power of a Product Property: (ab) m =a m b m Negative Exponent Property : a -m = ; a≠0 Zero Exponent Property : a 0 =1; a≠0 Quotient of Powers: a m = a m-n ; a≠0 a n Power of Quotient: b≠0 You must memorize the formulas.
3
Example A – Product Property (-5) 4 * (-5) 5 = (-5) 4+5 = (-5) 9 = -1953125 Calculators will be rendered useless. You must memorize the formulas. (-n) 4 * (-n) 5 = (-n) 4+5 = (-n) 9 = -n 9 =
4
Example B x 5 * x 2 = x 5+2 = x 7 You must memorize the formulas.
5
Example 1 on page 324 – Power of a Power (2 3 ) 4 = 2 3*4 = 2 12 = 4096 Calculators will be rendered useless. You must memorize the formulas. (a 3 ) 4 = a 3*4 = a 12 =
6
Example 1-b (3 4 ) 2 = 3 4*2 = 3 8 = 6561 Calculators will be rendered useless. You must memorize the formulas. (b 4 ) 2 = b 4*2 = b 8 =
7
Example 1-c – Neg. Exponent (-5) -6 (-5) 4 = (-5) -6+4 = (-5) -2 = Calculators will be rendered useless. You must memorize the formulas. (-c) -6 (-c) 4 = (-c) -6+4 = (-c) -2 = 1/(-c) 2 = 1/c 2
8
Example 6 – Quotient of Powers
9
Example 2A – Power of Quotient
10
Example 2B – Zero Exponent (7b -3 ) 2 b 5 b = 7 2 b -3*2 b 5 b = 49 b -6+5+1 = 49b 0 = 49
11
Example 9 – Quotient of Powers
12
Scientific Notation 131,400,000,000= 1.314 x 10 11 Move the decimal behind the 1 st number How many places did you have to move the decimal? Put that number here!
13
Example 4 pg. 325– Scientific Notation 131,400,000,000 = 5,284,000 1.314 x 10 11 = 5.284 x 10 6
14
AAAA ssss ssss iiii gggg nnnn mmmm eeee nnnn ttttfirst READ the goals 2nd read the examples
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.