Download presentation
Presentation is loading. Please wait.
Published byEgbert Leonard Modified over 8 years ago
1
Incremental learning for Robust Visual Tracking 2013-10-08 Ko Dae-Won
2
PCA Face recognition for PCA Sequencial Inference Model Dynamical model Observation model 6. Summary of the tracking algorithm Contents Incremental learning for Robust Visual Tracking
3
1. PCA(Principal Component Analysis) Incremental learning for Robust Visual Tracking
4
2. Face recognition for PCA Incremental learning for Robust Visual Tracking
5
2. Face recognition for PCA Incremental learning for Robust Visual Tracking
6
2. Face recognition for PCA Incremental learning for Robust Visual Tracking
7
2. Face recognition for PCA Incremental learning for Robust Visual Tracking
8
2. Face recognition for PCA Incremental learning for Robust Visual Tracking
9
2. Face recognition for PCA Incremental learning for Robust Visual Tracking
10
2. Face recognition for PCA Incremental learning for Robust Visual Tracking
11
2. Face recognition for PCA Incremental learning for Robust Visual Tracking
12
Visual tracking problem : an inference task in a Markov model with hidden state variables 3. Sequencial Inference Model Incremental learning for Robust Visual Tracking
13
3. Sequencial Inference Model Incremental learning for Robust Visual Tracking
14
3. Sequencial Inference Model Incremental learning for Robust Visual Tracking
15
4. Dynamical Model Incremental learning for Robust Visual Tracking
16
4. Dynamical Model Incremental learning for Robust Visual Tracking
17
5. Observation Model Incremental learning for Robust Visual Tracking
18
5. Observation Model Incremental learning for Robust Visual Tracking
19
5. Observation Model Incremental learning for Robust Visual Tracking
20
6. Summary of the tracking algorithm 20 Incremental learning for Robust Visual Tracking
21
6. Summary of the tracking algorithm Incremental learning for Robust Visual Tracking 21
22
5. Store the image window. When the desired number of new images have been accumulated, perform an incremental update of eigenbasis, mean and effective number of observations. 6. Go to step 3. 6. Summary of the tracking algorithm 22 Incremental learning for Robust Visual Tracking
23
5. Store the image window. When the desired number of new images have been accumulated, perform an incremental update of eigenbasis, mean and effective number of observations. 6. Go to step 3. 6. Summary of the tracking algorithm 23 Incremental learning for Robust Visual Tracking
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.