Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Xilinx Spartan-3E FPGA family. Field Programmable Gate Array (FPGA) Configurable Logic Block (CLB) –Look-up table (LUT) –Register –Logic circuit Adder.

Similar presentations


Presentation on theme: "The Xilinx Spartan-3E FPGA family. Field Programmable Gate Array (FPGA) Configurable Logic Block (CLB) –Look-up table (LUT) –Register –Logic circuit Adder."— Presentation transcript:

1 The Xilinx Spartan-3E FPGA family

2 Field Programmable Gate Array (FPGA) Configurable Logic Block (CLB) –Look-up table (LUT) –Register –Logic circuit Adder Multiplier Memory Microprocessor Input/Output Block (IOB) Programmable interconnect

3 Xilinx FPGA families High performance –Virtex (1998) 50K-1M gates, 0.22µm –Virtex-E/EM (1999) 50K-4M gates, 0.18µm –Virtex-II (2000) 40K-8M gates, 0.15µm –Virtex-II Pro/X (2002) 50K-10M gates, 0.13µm –Virtex-4 (2004) [LX, FX, SX] 50K-10M gates, 90nm –Virtex-5 (2006) [LX, LXT, SXT] 65nm Low cost –Spartan-II (2000) 15K-200K gates, 0.22µm –Spartan-IIE (2001) 50K-600K gates, 0.18µm –Spartan-3 (2003) 50K-5M gates, 90nm –Spartan-3E (2005) 100K-1.6M gates, 90nm http://www.xilinx.com

4 Spartan-3E architecture

5 Four Types of Interconnect Tiles

6 Array of Interconnect Tiles

7 Interconnect Types

8 Simplified IOB Diagram 3.3V low-voltage TTL (LVTTL) Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V, 1.5V, or 1.2V 3V PCI at 33 MHz, 66 MHz HSTL I and III at 1.8V SSTL I at 1.8V and 2.5V LVDS, Bus LVDS, mini-LVDS, RSDS Differential HSTL, SSTL 2.5V LVPECL inputs

9 Spartan-3 CLB array

10 Arrangement of Slices within the CLB

11 Resources in a Slice

12 Simplified Diagram of the Left- Hand SLICEM

13 LUT Resources in a Slice

14 Dedicated Multiplexers

15 Carry Logic

16 Using the Carry Logic

17 RAM16X1D Dual-Port Usage

18 Logic Cell SRL16 Structure

19 Block RAM

20 Dedicated 18x18bit Multiplier

21 DCM Functional Blocks and Associated Signals Clock-skew Elimination Frequency Synthesis Phase Shifting

22 Simple DCM usage

23 Digilent Nexys2

24

25 Basic modeling constructs

26 Entity Declaration entity identifier is [port (port_interface_list);] {entity_declarative item} end [entity] [identifier]; interface_list <= (identifier {, …} : [mode] subtype_indication [:= expression]){; …} mode <= in | out | inout

27 Entity Declaration entity adder is port ( a : in word; b : in word; sum : out word); end entity adder; entity adder is port ( a, b : in word; sum : out word); end entity adder; entity and_or_inv is port ( a1, a2, b1, b2 : in bit := '1'; y : out bit ); end entity and_or_inv; entity top_level is end entity top_level;

28 Entity Declaration entity program_ROM is port ( address : in std_ulogic_vector(14 downto 0); data : out std_ulogic_vector(7 downto 0); enable : in std_ulogic ); subtype instruction_byte is bit_vector(7 downto 0); type program_array is array (0 to 2**14 - 1) of instruction_byte; constant program : program_array := ( X"32", X"3F", X"03", -- LDA $3F03 X"71", X"23", -- BLT $23 others => X"00„ --... ); end entity program_ROM;

29 Architecture Body architecture identifier of entity_name is {block_declarative_item} begin {concurrent_statement} end [architecture][identifier];

30 Architecture Body entity adder is port ( a : in word; b : in word; sum : out word); end entity adder; architecture abstract of adder is begin add_a_b : process (a, b) is begin sum <= a + b; end process add_a_b; end architecture abstract;

31 Signal declaration and assignment signal identifier {, …} : subtype_indication [:=expression]; [label:] name <= [delay_mechanism] waveform; waveform <= (value_expression [after time_expression]){, …} y <= not or_a_b after 5 ns;

32 Discrete event simulation Transaction –After signal assignment, new value at simulaton time T Active signal –Signal is updated at time T Event –New value /= old value

33 Discrete event simulation Initialization phase –Each signal is given an initial value –Simulation time is set to 0 –Each process is activated –Signals assigned, transactions scheduled Simulation cycle –Signal update Advance time to the next transaction Perform all scheduled transactions for this time –Process execution Wake processes which is sensitive to the previous events New events may occur

34 Signal assignment entity and_or_inv is port ( a1, a2, b1, b2 : in bit := '1'; y : out bit ); end entity and_or_inv; architecture primitive of and_or_inv is signal and_a, and_b : bit; signal or_a_b : bit; begin and_gate_a : process (a1, a2) is begin and_a <= a1 and a2; end process and_gate_a; and_gate_b : process (b1, b2) is begin and_b <= b1 and b2; end process and_gate_b; or_gate : process (and_a, and_b) is begin or_a_b <= and_a or and_b; end process or_gate; inv : process (or_a_b) is begin y <= not or_a_b; end process inv; end architecture primitive;

35 Signal assignment stimulus_05_3_a : process is begin or_a_b <= '1' after 20 ns, '0' after 40 ns; wait; end process stimulus_05_3_a; architecture test of fg_05_04 is constant prop_delay : time := 5 ns; signal a, b, sel, z : bit; begin mux : process (a, b, sel) is begin case sel is when '0' => z <= a after prop_delay; when '1' => z <= b after prop_delay; end case; end process mux;

36 Signal assignment clock_gen : process (clk) is begin if clk = '0' then clk <= '1' after T_pw, '0' after 2*T_pw; end if; end process clock_gen; process_05_3_b : process is constant T_pw : delay_length := 10 ns; begin clk <= '1' after T_pw, '0' after 2*T_pw; wait for 2*T_pw; end process process_05_3_b;

37 Signal attributes S’delayed(T) –A signal that takes on the same value as S but is delayed by time T S’stable(T) –A Boolean signal that is true if there has been no event on S in time T interval T up to the current time, othervise false S’quiet(T) –A Boolean signal that is true if there has been no transaction on S in time T interval T up to the current time, othervise false S’transaction –A signal of type bit that changes value from ‘0’ to ‘1’ or vice versa each time there is a transaction on S

38 Signal attributes S’event –True if there is an event on S in the current simulation cycle, false otherwise S’active –True if there is a transaction on S in the current simulation cycle, false otherwise S’last_event –The time interval since the last event on S S’last_active –The time interval since the last transaction on S S’last_value –The value of S just before the last event on S

39 Examples constant Tpw_clk : delay_length := 10 ns; constant Tsu : delay_length := 4 ns; if clk'event and (clk = '1' or clk = 'H') and (clk'last_value = '0' or clk'last_value = 'L') then assert d'last_event >= Tsu report "Timing error: d changed within setup time of clk"; end if; assert (not clk'event) or clk'delayed'last_event >= Tpw_clk report "Clock frequency too high";

40 Wait statement [label:] wait [on signal_name {, …}] [until boolean_expression] [for time_expression];

41 Examples half_add : process is begin sum <= a xor b after T_pd; carry <= a and b after T_pd; wait on a, b; end process half_add; half_add : process (a, b) is begin sum <= a xor b after T_pd; carry <= a and b after T_pd; end process half_add;

42 Examples entity mux2 is port ( a, b, sel : in bit; z : out bit ); end entity mux2; -------------------------------------------------- architecture behavioral of mux2 is constant prop_delay : time := 2 ns; begin slick_mux : process is begin case sel is when '0' => z <= a after prop_delay; wait on sel, a; when '1' => z <= b after prop_delay; wait on sel, b; end case; end process slick_mux; end architecture behavioral;

43 Examples wait until clk = '1'; report "clk rising edge detected"; wait on clk until reset = '0'; report "synchronous reset detected"; wait until trigger = '1' for 1 ms; if trigger'event and trigger = '1' then report "trigger rising edge detected"; else report "trigger timeout"; end if;

44 Examples test_gen : process is begin test0 <= '0' after 10 ns, '1' after 20 ns, '0' after 30 ns, '1' after 40 ns; test1 <= '0' after 10 ns, '1' after 30 ns; wait; end process test_gen;

45 Delta delay Signal assignment without after equivalent to a delay of 0 fs BUT the signal value does not change as soon as the signal assignment statement is executed Assignment schedules a transaction for the signal The process does NOT see the effect of the assignment until it next time resumes


Download ppt "The Xilinx Spartan-3E FPGA family. Field Programmable Gate Array (FPGA) Configurable Logic Block (CLB) –Look-up table (LUT) –Register –Logic circuit Adder."

Similar presentations


Ads by Google