Download presentation
Presentation is loading. Please wait.
Published byDavid Chapman Modified over 9 years ago
1
Dr. Wolf's CHM 201 & 202 17- 1 Chapter 17 Aldehydes and Ketones. Nucleophilic Addition to the Carbonyl Group
2
Dr. Wolf's CHM 201 & 202 17- 2 NomenclatureNomenclature
3
Dr. Wolf's CHM 201 & 202 17- 3 IUPAC Nomenclature of Aldehydes HOOH OHCCHCHO Base the name on the chain that contains the carbonyl group and replace the -e ending of the hydrocarbon by -al.
4
Dr. Wolf's CHM 201 & 202 17- 4 4,4-dimethylpentanal 5-hexenal IUPAC Nomenclature of Aldehydes HOOH OHCCHCHO 2-phenylpropanedial (keep the -e ending before -dial)
5
Dr. Wolf's CHM 201 & 202 17- 5 when named as a substituent formyl group carbaldehyde or carboxaldehyde when named as a suffix C HO IUPAC Nomenclature of Aldehydes
6
Dr. Wolf's CHM 201 & 202 17- 6 CH 3 CH 2 CCH 2 CH 2 CH 3 O CH 3 CHCH 2 CCH 3 O CH 3 H3CH3CH3CH3C O Base the name on the chain that contains the carbonyl group and replace -e by -one. Number the chain in the direction that gives the lowest number to the carbonyl carbon. Substitutive IUPAC Nomenclature of Ketones
7
Dr. Wolf's CHM 201 & 202 17- 7 Substitutive IUPAC Nomenclature of Ketones CH 3 CH 2 CCH 2 CH 2 CH 3 O CH 3 CHCH 2 CCH 3 O CH 3 H3CH3CH3CH3C O 3-hexanone 4-methyl-2-pentanone 4-methylcyclohexanone
8
Dr. Wolf's CHM 201 & 202 17- 8 Functional Class IUPAC Nomenclature of Ketones CH 3 CH 2 CCH 2 CH 2 CH 3 OO CH 2 CCH 2 CH 3 CH CH 2 O H2CH2CH2CH2C CHC List the groups attached to the carbonyl separately in alphabetical order, and add the word ketone.
9
Dr. Wolf's CHM 201 & 202 17- 9 CH 3 CH 2 CCH 2 CH 2 CH 3 O ethyl propyl ketone benzyl ethyl ketone divinyl ketone O CH 2 CCH 2 CH 3 CH CH 2 O H2CH2CH2CH2C CHC Functional Class IUPAC Nomenclature of Ketones
10
Dr. Wolf's CHM 201 & 202 17- 10 Structure and Bonding: The Carbonyl Group
11
Dr. Wolf's CHM 201 & 202 17- 11 planar bond angles: close to 120° C=O bond distance: 122 pm Structure of Formaldehyde
12
Dr. Wolf's CHM 201 & 202 17- 12 1-butene propanal The Carbonyl Group O dipole moment = 0.3D dipole moment = 2.5D very polar double bond
13
Dr. Wolf's CHM 201 & 202 17- 13 2475 kJ/mol 2442 kJ/mol Alkyl groups stabilize carbonyl groups the same way they stabilize carbon-carbon double bonds, carbocations, and free radicals. heat of combustion Carbonyl group of a ketone is more stable than that of an aldehyde O OH
14
Dr. Wolf's CHM 201 & 202 17- 14 Heats of combustion of C 4 H 8 isomeric alkenes CH 3 CH 2 CH=CH 2 2717 kJ/mol cis-CH 3 CH=CHCH 3 2710 kJ/mol trans-CH 3 CH=CHCH 3 2707 kJ/mol (CH 3 ) 2 C=CH 2 2700 kJ/mol 2475 kJ/mol 2442 kJ/mol O OH Spread is greater for aldehydes and ketones than for alkenes
15
Dr. Wolf's CHM 201 & 202 17- 15 nucleophiles attack carbon; electrophiles attack oxygen Resonance Description of Carbonyl Group C O C O +–
16
Dr. Wolf's CHM 201 & 202 17- 16 Carbon and oxygen are sp 2 hybridized Bonding in Formaldehyde
17
Dr. Wolf's CHM 201 & 202 17- 17 The half-filled p orbitals on carbon and oxygen overlap to form a bond Bonding in Formaldehyde
18
Dr. Wolf's CHM 201 & 202 17- 18 Physical Properties
19
Dr. Wolf's CHM 201 & 202 17- 19 boiling point –6°C 49°C 97°C Aldehydes and ketones have higher boiling than alkenes, but lower boiling points than alcohols. More polar than alkenes, but cannot form intermolecular hydrogen bonds to other carbonyl groups O OH
20
Dr. Wolf's CHM 201 & 202 17- 20 Sources of Aldehydes and Ketones
21
Dr. Wolf's CHM 201 & 202 17- 21 2-heptanone (component of alarm pheromone of bees) O Many aldehydes and ketones occur naturally
22
Dr. Wolf's CHM 201 & 202 17- 22 trans-2-hexenal (alarm pheromone of myrmicine ant) Many aldehydes and ketones occur naturally O H
23
Dr. Wolf's CHM 201 & 202 17- 23 citral (from lemon grass oil) Many aldehydes and ketones occur naturally O H
24
Dr. Wolf's CHM 201 & 202 17- 24 from alkenes ozonolysis from alkynes hydration (via enol) from arenes Friedel-Crafts acylation from alcohols oxidation Synthesis of Aldehydes and Ketones A number of reactions already studied provide efficient synthetic routes to aldehydes and ketones.
25
Dr. Wolf's CHM 201 & 202 17- 25 COR OH aldehydes from carboxylic acids RCH 2 OH 1. LiAlH 4 2. H 2 O PDC, CH 2 Cl 2 H COR What about..?
26
Dr. Wolf's CHM 201 & 202 17- 26 benzaldehyde from benzoic acid COHO CHO 1. LiAlH 4 2. H 2 O PDC CH 2 Cl 2 CH 2 OH (81%) (83%) ExampleExample
27
Dr. Wolf's CHM 201 & 202 17- 27 COR H ketones from aldehydes R' COR PDC, CH 2 Cl 2 1. R'MgX 2. H 3 O + RCHR' OH What about..?
28
Dr. Wolf's CHM 201 & 202 17- 28 C O CH 3 CH 2 H 3-heptanone from propanal H 2 CrO 4 1. CH 3 (CH 2 ) 3 MgX 2. H 3 O + CH 3 CH 2 CH(CH 2 ) 3 CH 3 OH O CH 3 CH 2 C(CH 2 ) 3 CH 3 (57%) ExampleExample
29
Dr. Wolf's CHM 201 & 202 17- 29 Reactions of Aldehydes and Ketones: A Review and a Preview
30
Dr. Wolf's CHM 201 & 202 17- 30 Already covered in earlier chapters: reduction of C=O to CH 2 Clemmensen reduction Wolff-Kishner reduction reduction of C=O to CHOH addition of Grignard and organolithium reagents Reactions of Aldehydes and Ketones
31
Dr. Wolf's CHM 201 & 202 17- 31 Principles of Nucleophilic Addition to Carbonyl Groups: Hydration of Aldehydes and Ketones
32
Dr. Wolf's CHM 201 & 202 17- 32 H2OH2OH2OH2O Hydration of Aldehydes and Ketones C O HO C O H
33
Dr. Wolf's CHM 201 & 202 17- 33 compared to H electronic: alkyl groups stabilize reactants steric: alkyl groups crowd product OHOH R R' + H2OH2OH2OH2O C C R R' O Substituent Effects on Hydration Equilibria
34
Dr. Wolf's CHM 201 & 202 17- 34 C=OhydrateK%Relative rate CH 2 =OCH 2 (OH) 2 2300>99.92200 CH 3 CH=OCH 3 CH(OH) 2 1.0501.0 (CH 3 ) 3 CCH=O(CH 3 ) 3 CCH(OH) 2 0.2170.09 (CH 3 ) 2 C=O(CH 3 ) 2 C(OH) 2 0.00140.140.0018 Equilibrium Constants and Relative Rates of Hydration
35
Dr. Wolf's CHM 201 & 202 17- 35 when carbonyl group is destabilized alkyl groups stabilize C=O electron-withdrawing groups destabilize C=O When does equilibrium favor hydrate?
36
Dr. Wolf's CHM 201 & 202 17- 36 OH OH R R + H2OH2OH2OH2O C C R RO Substituent Effects on Hydration Equilibria R = CH 3 : K = 0.000025 R = CF 3 : K = 22,000
37
Dr. Wolf's CHM 201 & 202 17- 37 Mechanism of Hydration (base) C O O H – Step 1: + HO C O –
38
Dr. Wolf's CHM 201 & 202 17- 38 Mechanism of Hydration (base) Step 2: O HH HO C O – + O H – HO C OHOHOHOH
39
Dr. Wolf's CHM 201 & 202 17- 39 Mechanism of Hydration (acid) C O Step 1: + HOH H + + C OHOHOHOH + H O H
40
Dr. Wolf's CHM 201 & 202 17- 40 Mechanism of Hydration (acid) Step 2: C OHOHOHOH + + HO H C OHOHOHOH HO H +
41
Dr. Wolf's CHM 201 & 202 17- 41 Mechanism of Hydration (acid) Step 3: + HO H C OHOHOHOH H OH O H C OHOHOHOH + H H OH +
42
Dr. Wolf's CHM 201 & 202 17- 42 Cyanohydrin Formation
43
Dr. Wolf's CHM 201 & 202 17- 43 + Cyanohydrin Formation CO HCN H C O NC
44
Dr. Wolf's CHM 201 & 202 17- 44 Cyanohydrin Formation CO C–N
45
Dr. Wolf's CHM 201 & 202 17- 45 Cyanohydrin Formation – O NC C HH H + O H H O O NC C H
46
Dr. Wolf's CHM 201 & 202 17- 46 2,4-Dichlorobenzaldehyde cyanohydrin (100%) ExampleExampleClCl CH OClCl CHCN OH NaCN, water then H 2 SO 4
47
Dr. Wolf's CHM 201 & 202 17- 47 ExampleExample CH 3 CCH 3 O NaCN, water then H 2 SO 4 CH 3 CCH 3 OHCN (77-78%)
48
Dr. Wolf's CHM 201 & 202 17- 48 Acetal Formation
49
Dr. Wolf's CHM 201 & 202 17- 49 Some reactions of aldehydes and ketones progress beyond the nucleophilic addition stage Acetal formation Imine formation Enamine formation Compounds related to imines The Wittig reaction
50
Dr. Wolf's CHM 201 & 202 17- 50 Recall Hydration of Aldehydes and Ketones HOH C O HO C O H RR' R R'
51
Dr. Wolf's CHM 201 & 202 17- 51 Alcohols Under Analogous Reaction with Aldehydes and Ketones R"OH C O RR' R"O C O H R R' Product is called a hemiacetal.
52
Dr. Wolf's CHM 201 & 202 17- 52 Product is called a hemiacetal. ROH, H + Hemiacetal reacts further in acid to yield an acetal R"O C O H RR' R"O C OR RR' Product is called an acetal.
53
Dr. Wolf's CHM 201 & 202 17- 53 HCl 2CH 3 CH 2 OH + + H 2 O Benzaldehyde diethyl acetal (66%) ExampleExample CHO CH(OCH 2 CH 3 ) 2
54
Dr. Wolf's CHM 201 & 202 17- 54 HOCH 2 CH 2 OH + CH 3 (CH 2 ) 5 CH O p-toluenesulfonic acid benzene + H2OH2OH2OH2O (81%) H (CH 2 ) 5 CH 3 H2CH2CH2CH2C CH 2 O O C Diols Form Cyclic Acetals
55
Dr. Wolf's CHM 201 & 202 17- 55 In general: Position of equilibrium is usually unfavorable for acetal formation from ketones. Important exception: Cyclic acetals can be prepared from ketones.
56
Dr. Wolf's CHM 201 & 202 17- 56 HOCH 2 CH 2 OH +O p-toluenesulfonic acid benzene + H2OH2OH2OH2O H2CH2CH2CH2C CH 2 O O C (78%) C 6 H 5 CH 2 CCH 3 CH 3 C 6 H 5 CH 2 ExampleExample
57
Dr. Wolf's CHM 201 & 202 17- 57 First stage is analogous to hydration and leads to hemiacetal acid-catalyzed nucleophilic addition of alcohol to C=O Mechanism of Acetal Formation
58
Dr. Wolf's CHM 201 & 202 17- 58 MechanismMechanism C O HH R + O
59
Dr. Wolf's CHM 201 & 202 17- 59 MechanismMechanism C O H R O H +
60
Dr. Wolf's CHM 201 & 202 17- 60 MechanismMechanism C O H +RH O
61
Dr. Wolf's CHM 201 & 202 17- 61 MechanismMechanism C O O H + R H O RH
62
Dr. Wolf's CHM 201 & 202 17- 62 MechanismMechanism +HO RH C O O H R
63
Dr. Wolf's CHM 201 & 202 17- 63 Second stage is hemiacetal-to-acetal conversion involves carbocation chemistry Mechanism of Acetal Formation
64
Dr. Wolf's CHM 201 & 202 17- 64 Hemiacetal-to-acetal Stage C O O H R HH R + O
65
Dr. Wolf's CHM 201 & 202 17- 65 Hemiacetal-to-acetal Stage HR O C O O H R H +
66
Dr. Wolf's CHM 201 & 202 17- 66 Hemiacetal-to-acetal Stage O O H R + H C
67
Dr. Wolf's CHM 201 & 202 17- 67 Hemiacetal-to-acetal Stage C O R + O HH
68
Dr. Wolf's CHM 201 & 202 17- 68 Hemiacetal-to-acetal Stage C O R + Carbocation is stabilized by delocalization of unshared electron pair of oxygen C OR +
69
Dr. Wolf's CHM 201 & 202 17- 69 Hemiacetal-to-acetal Stage C O R + O H R
70
Dr. Wolf's CHM 201 & 202 17- 70 Hemiacetal-to-acetal Stage C O R + O H R O HR
71
Dr. Wolf's CHM 201 & 202 17- 71 Hemiacetal-to-acetal Stage + H O HR C O R O R
72
Dr. Wolf's CHM 201 & 202 17- 72 C R R'O 2R"OH + OR" R R' C + H 2 O mechanism: reverse of acetal formation; hemiacetal is intermediate application: aldehydes and ketones can be "protected" as acetals. Hydrolysis of Acetals
73
Dr. Wolf's CHM 201 & 202 17- 73 Acetals as Protecting Groups
74
Dr. Wolf's CHM 201 & 202 17- 74 The conversion shown cannot be carried out directly... CH CH 3 CCH 2 CH 2 C O CCH 3 CH 3 CCH 2 CH 2 C O 1. NaNH 2 2. CH 3 I ExampleExample
75
Dr. Wolf's CHM 201 & 202 17- 75 because the carbonyl group and the carbanion are incompatible functional groups. C:C:C:C: CH 3 CCH 2 CH 2 C O–
76
Dr. Wolf's CHM 201 & 202 17- 76 1) protect C=O 2) alkylate 3) restore C=O 1) protect C=O 2) alkylate 3) restore C=O StrategyStrategy
77
Dr. Wolf's CHM 201 & 202 17- 77 HOCH 2 CH 2 OH + p-toluenesulfonic acid benzene H2CH2CH2CH2C CH 2 O O C CH 3 CH 3 CCH 2 CH 2 C O CH CH 2 CH 2 C CH Example: Protect
78
Dr. Wolf's CHM 201 & 202 17- 78 H2CH2CH2CH2C CH 2 O O C CH 3 CH 2 CH 2 C CH 1. NaNH 2 2. CH 3 I H2CH2CH2CH2C CH 2 O O C CH 3 CH 2 CH 2 C CCH 3 Example: Alkylate
79
Dr. Wolf's CHM 201 & 202 17- 79 H2CH2CH2CH2C CH 2 O O C CH 3 CH 2 CH 2 C CCH 3 H2OH2OH2OH2O HCl HOCH 2 CH 2 OH (96%) CCH 3 CH 3 CCH 2 CH 2 C O+ Example: Deprotect
80
Dr. Wolf's CHM 201 & 202 17- 80 Reaction with Primary Amines: Imines
81
Dr. Wolf's CHM 201 & 202 17- 81 Some reactions of aldehydes and ketones progress beyond the nucleophilic addition stage Acetal formation Imine formation Compounds related to imines Enamines The Wittig reaction
82
Dr. Wolf's CHM 201 & 202 17- 82 Some reactions of aldehydes and ketones progress beyond the nucleophilic addition stage Acetal formation Imine formation Compounds related to imines Enamines The Wittig reaction
83
Dr. Wolf's CHM 201 & 202 17- 83 H2NH2NH2NH2N R C O + H a carbinolamine CO HNHNHNHN R N R C + H 2 O (imine) Imine (Schiff's Base) Formation
84
Dr. Wolf's CHM 201 & 202 17- 84 CH 3 NH 2 CHO+ CH=NCH 3 + H 2 O N-Benzylidenemethylamine (70%) ExampleExample
85
Dr. Wolf's CHM 201 & 202 17- 85 CH 3 NH 2 CHO+ CH=NCH 3 + H 2 O N-Benzylidenemethylamine (70%) ExampleExample CH OHOHOHOH NHCH 3
86
Dr. Wolf's CHM 201 & 202 17- 86 (CH 3 ) 2 CHCH 2 NH 2 O + + H 2 O N-Cyclohexylideneisobutylamine (79%) NCH 2 CH(CH 3 ) 2 ExampleExample
87
Dr. Wolf's CHM 201 & 202 17- 87 (CH 3 ) 2 CHCH 2 NH 2 O + + H 2 O N-Cyclohexylideneisobutylamine (79%) NCH 2 CH(CH 3 ) 2 OHOHOHOH NHCH 2 CH(CH 3 ) 2 ExampleExample
88
Dr. Wolf's CHM 201 & 202 17- 88 Some reactions of aldehydes and ketones progress beyond the nucleophilic addition stage Acetal formation Imine formation Compounds related to imines Enamines The Wittig reaction
89
Dr. Wolf's CHM 201 & 202 17- 89 Some reactions of aldehydes and ketones progress beyond the nucleophilic addition stage Acetal formation Imine formation Compounds related to imines Enamines The Wittig reaction
90
Dr. Wolf's CHM 201 & 202 17- 90 Reaction with Derivatives of Ammonia H2NH2NH2NH2NG + R2CR2CR2CR2C O R2CR2CR2CR2C NGNGNGNG+ H2OH2OH2OH2O H2NH2NH2NH2NOH R2CR2CR2CR2C NOH hydroxylamineoxime
91
Dr. Wolf's CHM 201 & 202 17- 91 CH 3 (CH 2 ) 5 CH + H 2 NOH O CH 3 (CH 2 ) 5 CH + H 2 O NOH (81-93%) ExampleExample
92
Dr. Wolf's CHM 201 & 202 17- 92 Reaction with Derivatives of Ammonia H2NH2NH2NH2NG + R2CR2CR2CR2C O R2CR2CR2CR2C NGNGNGNG+ H2OH2OH2OH2O H2NH2NH2NH2NOH R2CR2CR2CR2C NOH hydroxylamineoxime H2NH2NH2NH2N NH 2 R2CR2CR2CR2C NNH 2 hydrazinehydrazone etc.
93
Dr. Wolf's CHM 201 & 202 17- 93 + H 2 NNH 2 + H 2 O (73%) ExampleExampleOC NNH 2 C
94
Dr. Wolf's CHM 201 & 202 17- 94 CCH 3 ExampleExampleO + H 2 NNH phenylhydrazine + H 2 O CCH 3 NNH a phenylhydrazone (87-91%)
95
Dr. Wolf's CHM 201 & 202 17- 95 CH 3 (CH 2 ) 9 CCH 3 O H 2 NNHCNH 2 O + H2OH2OH2OH2O CH 3 (CH 2 ) 9 CCH 3 NNHCNH 2 O+ ExampleExample semicarbazide a semicarbazone (93%)
96
Dr. Wolf's CHM 201 & 202 17- 96 Reaction with Secondary Amines: Enamines
97
Dr. Wolf's CHM 201 & 202 17- 97 Some reactions of aldehydes and ketones progress beyond the nucleophilic addition stage Acetal formation Imine formation Compounds related to imines Enamines The Wittig reaction
98
Dr. Wolf's CHM 201 & 202 17- 98 Some reactions of aldehydes and ketones progress beyond the nucleophilic addition stage Acetal formation Imine formation Compounds related to imines Enamines The Wittig reaction
99
Dr. Wolf's CHM 201 & 202 17- 99 R2NHR2NHR2NHR2NH + H 2 O (enamine) C R2NR2NR2NR2N C Enamine Formation C O R2NR2NR2NR2N H H C C O H C
100
Dr. Wolf's CHM 201 & 202 17- 100 + (heat in benzene) ExampleExampleO NHNHNHNH via OHOHOHOH N (80-90%) N
101
Dr. Wolf's CHM 201 & 202 17- 101 The Wittig Reaction
102
Dr. Wolf's CHM 201 & 202 17- 102 Some reactions of aldehydes and ketones progress beyond the nucleophilic addition stage Acetal formation Imine formation Compounds related to imines Enamines The Wittig reaction
103
Dr. Wolf's CHM 201 & 202 17- 103 Some reactions of aldehydes and ketones progress beyond the nucleophilic addition stage Acetal formation Imine formation Compounds related to imines Enamines The Wittig reaction
104
Dr. Wolf's CHM 201 & 202 17- 104 The Wittig Reaction Synthetic method for preparing alkenes. One of the reactants is an aldehyde or ketone. The other reactant is a phosphorus ylide. (C 6 H 5 ) 3 P C +AB – (C 6 H 5 ) 3 P CAB A key property of ylides is that they have a negatively polarized carbon and are nucleophilic.
105
Dr. Wolf's CHM 201 & 202 17- 105 Figure 17.12 Charge distribution in a ylide
106
Dr. Wolf's CHM 201 & 202 17- 106 The Wittig Reaction (C 6 H 5 ) 3 P C +AB – + + CC R R' A B (C 6 H 5 ) 3 P O + – CORR'
107
Dr. Wolf's CHM 201 & 202 17- 107 ExampleExample + + (C 6 H 5 ) 3 P O+ – (C 6 H 5 ) 3 P CH 2 +– O DMSO (86%) dimethyl sulfoxide (DMSO) or tetrahydrofuran (THF) is the customary solvent
108
Dr. Wolf's CHM 201 & 202 17- 108 MechanismMechanism CORR' P(C 6 H 5 ) 3 + CAB – OC C RR' B A Step 1
109
Dr. Wolf's CHM 201 & 202 17- 109 MechanismMechanism OC C P(C 6 H 5 ) 3 RR' B A Step 2 P(C 6 H 5 ) 3 + – O R'RA B C C +
110
Dr. Wolf's CHM 201 & 202 17- 110 Planning an Alkene Synthesis via the Wittig Reaction
111
Dr. Wolf's CHM 201 & 202 17- 111 Retrosynthetic Analysis There will be two possible Wittig routes to an alkene. Analyze the structure retrosynthetically. Disconnect the doubly bonded carbons. One will come from the aldehyde or ketone, the other from the ylide. CCRR' A B
112
Dr. Wolf's CHM 201 & 202 17- 112 Retrosynthetic Analysis of Styrene C 6 H 5 CH CH 2 HCH O + (C 6 H 5 ) 3 P CHC 6 H 5 + – C 6 H 5 CH O+ (C 6 H 5 ) 3 P CH 2 + – Both routes are acceptable.
113
Dr. Wolf's CHM 201 & 202 17- 113 Preparation of Ylides Ylides are prepared from alkyl halides by a two-stage process. The first step is a nucleophilic substitution. Triphenylphosphine is the nucleophile. (C 6 H 5 ) 3 P + CHAB X + (C 6 H 5 ) 3 P CHAB + X–X–X–X–
114
Dr. Wolf's CHM 201 & 202 17- 114 Preparation of Ylides In the second step, the phosphonium salt is treated with a strong base in order to remove a proton from the carbon bonded to phosphorus. (C 6 H 5 ) 3 P CAB + H base – (C 6 H 5 ) 3 P CAB + – H base
115
Dr. Wolf's CHM 201 & 202 17- 115 Preparation of Ylides Typical strong bases include organolithium reagents (RLi), and the conjugate base of dimethyl sulfoxide as its sodium salt [NaCH 2 S(O)CH 3 ]. (C 6 H 5 ) 3 P CAB + H base (C 6 H 5 ) 3 P C A B + – – Hbase
116
Dr. Wolf's CHM 201 & 202 17- 116 Stereoselective Addition to Carbonyl Groups Nucleophilic addition to carbonyl groups sometimes leads to a mixture of stereoisomeric products.
117
Dr. Wolf's CHM 201 & 202 17- 117 20% ExampleExample CH 3 H3CH3CH3CH3CO 80% OHOHOHOH H H3CH3CH3CH3C OHOHOHOH H H3CH3CH3CH3C NaBH 4
118
Dr. Wolf's CHM 201 & 202 17- 118 this methyl group hinders approach of nucleophile from top H 3 B—H – preferred direction of approach is to less hindered (bottom) face of carbonyl group preferred direction of approach is to less hindered (bottom) face of carbonyl group Steric Hindrance to Approach of Reagent
119
Dr. Wolf's CHM 201 & 202 17- 119 Biological reductions are highly stereoselective pyruvic acid S-(+)-lactic acid O CH 3 CCO 2 H NADH H+H+H+H+ enzyme is lactate dehydrogenase CO 2 H HOHOHOHO H CH 3
120
Dr. Wolf's CHM 201 & 202 17- 120 Figure 17.14 One face of the substrate can bind to the enzyme better than the other.
121
Dr. Wolf's CHM 201 & 202 17- 121 Figure 17.14 Change in geometry from trigonal to tetrahedral is stereoselective. Bond formation occurs preferentially from one side rather than the other.
122
Dr. Wolf's CHM 201 & 202 17- 122 in aqueous solution RCH RCH RCOHOOH OH H2OH2OH2OH2OO Oxidation of Aldehydes
123
Dr. Wolf's CHM 201 & 202 17- 123 K 2 Cr 2 O 7 H 2 SO 4 H2OH2OH2OH2O O O CH O O COH (75%) via O OH CH OH ExampleExample
124
Dr. Wolf's CHM 201 & 202 17- 124 The Baeyer-Villiger Oxidation of Ketones Oxidation of ketones with peroxy acids gives esters by a novel rearrangement.
125
Dr. Wolf's CHM 201 & 202 17- 125 R"COOH O RCR' O + R"COH O + KetoneEster ROCR' O GeneralGeneral
126
Dr. Wolf's CHM 201 & 202 17- 126 C 6 H 5 COOH O (67%) Oxygen insertion occurs between carbonyl carbon and larger group. Methyl ketones give acetate esters. CHCl 3 ExampleExample CCH 3 O OCCH 3 O
127
Dr. Wolf's CHM 201 & 202 17- 127 C 6 H 5 COOH O (66%) Reaction is stereospecific. Oxygen insertion occurs with retention of configuration. CHCl 3 StereochemistryStereochemistry O CCH 3 H3CH3CH3CH3C HH OCCH 3 O H3CH3CH3CH3C HH
128
Dr. Wolf's CHM 201 & 202 17- 128 R"COOH O RCR' O + ROCR' O R"COH O + First step is nucleophilic addition of peroxy acid to the carbonyl group of the ketone. O O C O H R R' OCR" MechanismMechanism
129
Dr. Wolf's CHM 201 & 202 17- 129 R"COOH O RCR' O + ROCR' O R"COH O + O O C OHR R' OCR" Second step is migration of group R from carbon to oxygen. The weak O—O bond breaks in this step. MechanismMechanism
130
Dr. Wolf's CHM 201 & 202 17- 130 Certain bacteria use hydrocarbons as a source of carbon. Oxidation proceeds via ketones, which then undergo oxidation of the Baeyer-Villiger type. Biological Baeyer-Villliger Oxidation O bacterial oxidation O O O 2. cyclohexanone monooxygenase, coenzymes
131
Dr. Wolf's CHM 201 & 202 17- 131 Spectroscopic Analysis of Aldehydes and Ketones
132
Dr. Wolf's CHM 201 & 202 17- 132 Presence of a C=O group is readily apparent in infrared spectrum C=O stretching gives an intense absorption at 1710-1750 cm-1 In addition to peak for C=O, aldehydes give two weak peaks near 2720 and 2820 nm for H—C=O Infrared Spectroscopy
133
Dr. Wolf's CHM 201 & 202 17- 133 Francis A. Carey, Organic Chemistry, Fifth Edition. Copyright © 2003 The McGraw-Hill Companies, Inc. All rights reserved.200035003000250010001500500 Wave number, cm -1 Figure 17.16 Infrared Spectrum of Butanal C=O CH 3 CH 2 CH 2 CH=O H—C=O 2720 cm -1 2820 cm -1 1720 cm -1
134
Dr. Wolf's CHM 201 & 202 17- 134 Aldehydes: H—C=O proton is at very low field ( 9-10 ppm). Methyl ketones: CH 3 singlet near 2 ppm. 1 H NMR
135
Dr. Wolf's CHM 201 & 202 17- 135 01.02.03.04.05.06.07.08.09.010.0 Chemical shift ( , ppm) HCO CH(CH 3 ) 2
136
Dr. Wolf's CHM 201 & 202 17- 136 01.02.03.04.05.06.07.08.09.010.0 Chemical shift ( , ppm) CH 3 CO CH 3 CH 2
137
Dr. Wolf's CHM 201 & 202 17- 137 13 C NMR Carbonyl carbon is at extremely low field-near 200 ppm Intensity of carbonyl carbon is usually weak
138
Dr. Wolf's CHM 201 & 202 17- 138 Chemical shift ( , ppm) 020406080100120140160180200 CH 3 CH 2 CCH 2 CH 2 CH 2 CH 3 O
139
Dr. Wolf's CHM 201 & 202 17- 139 UV-VISUV-VIS Aldehydes and ketones have two bands in the UV region: * and n * *: excitation of a bonding electron to an antibonding * orbital *: excitation of a nonbonding electron on oxygen to an antibonding * orbital
140
Dr. Wolf's CHM 201 & 202 17- 140 UV-VISUV-VIS H3CH3CH3CH3C H3CH3CH3CH3C C O * max 187 nm n * max 270 nm
141
Dr. Wolf's CHM 201 & 202 17- 141 Molecular ion fragments to give an acyl cation m/z 86 + m/z 57 Mass Spectrometry CH 2 CH 3 CH 3 CH 2 CCH 2 CH 3 +O CH 3 CH 2 C O +
142
Dr. Wolf's CHM 201 & 202 17- 142 End of Chapter 17
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.