Download presentation
Presentation is loading. Please wait.
Published byZoe Greer Modified over 9 years ago
1
EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)
2
EE3561_Unit 7Al-Dhaifallah14352 Lecture 19 Introduction to Numerical Integration Definitions Upper and Lower Sums Trapezoid Method Examples
3
EE3561_Unit 7Al-Dhaifallah14353 Integration Indefinite Integrals Indefinite Integrals of a function are functions that differ from each other by a constant. Definite Integrals Definite Integrals are numbers.
4
EE3561_Unit 7Al-Dhaifallah14354 Fundamental Theorem of Calculus
5
EE3561_Unit 7Al-Dhaifallah14355 The Area Under the Curve One interpretation of the definite integral is Integral = area under the curve ab f(x)
6
EE3561_Unit 7Al-Dhaifallah14356 Riemann Sums
7
EE3561_Unit 7Al-Dhaifallah14357 Numerical Integration Methods Numerical integration Methods Covered in this course Upper and Lower Sums Newton-Cotes Methods: Trapezoid Rule Romberg Method
8
EE3561_Unit 7Al-Dhaifallah14358 Upper and Lower Sums ab f(x) The interval is divided into subintervals
9
EE3561_Unit 7Al-Dhaifallah14359 Upper and Lower Sums ab f(x)
10
EE3561_Unit 7Al-Dhaifallah143510 Example
11
EE3561_Unit 7Al-Dhaifallah143511 Example
12
EE3561_Unit 7Al-Dhaifallah143512 Upper and Lower Sums Estimates based on Upper and Lower Sums are easy to obtain for monotonic functions (always increasing or always decreasing). For non-monotonic functions, finding maximum and minimum of the function can be difficult and other methods can be more attractive.
13
EE3561_Unit 7Al-Dhaifallah143513 Newton-Cotes Methods In Newton-Cote Methods, the function is approximated by a polynomial of order n Computing the integral of a polynomial is easy.
14
EE3561_Unit 7Al-Dhaifallah143514 Newton-Cotes Methods Trapezoid Method ( First Order Polynomial are used ) Simpson 1/3 Rule ( Second Order Polynomial are used ),
15
EE3561_Unit 7Al-Dhaifallah143515 Trapezoid Method f(x)
16
EE3561_Unit 7Al-Dhaifallah143516 Trapezoid Method Derivation-One interval
17
EE3561_Unit 7Al-Dhaifallah143517 Trapezoid Method f(x)
18
EE3561_Unit 7Al-Dhaifallah143518 Trapezoid Method Multiple Application Rule ab f(x) x
19
EE3561_Unit 7Al-Dhaifallah143519 Trapezoid Method General Formula and special case
20
EE3561_Unit 7Al-Dhaifallah143520 Example Given a tabulated values of the velocity of an object. Obtain an estimate of the distance traveled in the interval [0,3]. Time (s)0.01.02.03.0 Velocity (m/s)0.0101214 Distance = integral of the velocity
21
EE3561_Unit 7Al-Dhaifallah143521 Example Time (s)0.01.02.03.0 Velocity (m/s) 0.0101214
22
EE3561_Unit 7Al-Dhaifallah143522 Estimating the Error For Trapezoid method
23
EE3561_Unit 7Al-Dhaifallah143523 Error in estimating the integral Theorem
24
EE3561_Unit 7Al-Dhaifallah143524 Example
25
EE3561_Unit 7Al-Dhaifallah143525 Example x1.01.52.02.53.0 f(x)2.13.23.42.82.7
26
EE3561_Unit 7Al-Dhaifallah143526 Example x1.01.52.02.53.0 f(x)2.13.23.42.82.7
27
EE3561_Unit 7Al-Dhaifallah143527 Lecture 21 Romberg Method Motivation Derivation of Romberg Method Romberg Method Example When to stop?
28
EE3561_Unit 7Al-Dhaifallah143528 Motivation for Romberg Method Trapezoid formula with an interval h gives error of the order O(h 2 ) We can combine two Trapezoid estimates with intervals h and h/2 to get a better estimate.
29
EE3561_Unit 7Al-Dhaifallah143529 Romberg Method First column is obtained using Trapezoid Method R(0,0) R(1,0)R(1,1) R(2,0)R(2,1)R(2,2) R(3,0)R(3,1)R(3,2)R(3,3) The other elements are obtained using the Romberg Method
30
EE3561_Unit 7Al-Dhaifallah143530 First Column Recursive Trapezoid Method f(x)
31
EE3561_Unit 7Al-Dhaifallah143531 Recursive Trapezoid Method f(x) Based on previous estimate Based on new point
32
EE3561_Unit 7Al-Dhaifallah143532 Recursive Trapezoid Method f(x) Based on previous estimate Based on new points
33
EE3561_Unit 7Al-Dhaifallah143533 Recursive Trapezoid Method Formulas
34
EE3561_Unit 7Al-Dhaifallah143534 Recursive Trapezoid Method
35
EE3561_Unit 7Al-Dhaifallah143535 Derivation of Romberg Method
36
EE3561_Unit 7Al-Dhaifallah143536 Romberg Method R(0,0) R(1,0)R(1,1) R(2,0)R(2,1)R(2,2) R(3,0)R(3,1)R(3,2)R(3,3)
37
EE3561_Unit 7Al-Dhaifallah143537 Property of Romberg Method R(0,0) R(1,0)R(1,1) R(2,0)R(2,1)R(2,2) R(3,0)R(3,1)R(3,2)R(3,3) Error Level
38
EE3561_Unit 7Al-Dhaifallah143538 Example 1 0.5 3/81/3
39
EE3561_Unit 7Al-Dhaifallah143539 Example 1 cont. 0.5 3/81/3 11/321/3
40
EE3561_Unit 7Al-Dhaifallah143540 When do we stop?
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.