Download presentation
Presentation is loading. Please wait.
Published byHarry Doyle Modified over 9 years ago
2
SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2
3
Block Ciphers: Classical examples Symmetric Cryptosystems 20/10/2015 | pag. 3 Affine Cipher Affine Linear and Linear Cipher Vigenère Hill
4
Block Ciphers: Remark Secure block ciphers must not be (affine) linear or easy to approximate by linear functions!!! Cryptography 20/10/2015 | pag. 4
5
Remark Cryptography 20/10/2015 | pag. 5 Implementation of a (non-linear!) substitution often occurs through a look-up table, called S-box.
6
Block Ciphers: Advanced examples Symmetric Cryptosystems 20/10/2015 | pag. 6 DES – Feistel Cipher AES – Rijndael
7
DES: Feistel Cipher Cryptography 20/10/2015 | pag. 7 An iterated block cipher is a block cipher involving the sequential repetition of an internal function called rounds. an iterated block cipher
8
DES: Feistel Cipher Cryptography 20/10/2015 | pag. 8
9
DES: Feistel Cipher Cryptography 20/10/2015 | pag. 9
10
DES: Algorithm Cryptography 20/10/2015 | pag. 10
11
DES: Algorithm Cryptography 20/10/2015 | pag. 11
12
DES: Algorithm Cryptography 20/10/2015 | pag. 12
13
DES: Algorithm Cryptography 20/10/2015 | pag. 13
14
DES: Algorithm Cryptography 20/10/2015 | pag. 14
15
DES: Algorithm Cryptography 20/10/2015 | pag. 15
16
DES: Algorithm Cryptography 20/10/2015 | pag. 16
17
DES: Algorithm Cryptography 20/10/2015 | pag. 17
18
DES: Algorithm Cryptography 20/10/2015 | pag. 18
19
DES: S-Boxes Cryptography 20/10/2015 | pag. 19
20
DES: Algorithm Cryptography 20/10/2015 | pag. 20
21
DES: Algorithm Cryptography 20/10/2015 | pag. 21
22
DES: Algorithm Cryptography 20/10/2015 | pag. 22
23
DES: Algorithm Cryptography 20/10/2015 | pag. 23 Round number Number of left rotations 11 21 32 42 52 62 72 82 91 102 112 122 132 142 152 161
24
DES: Algorithm Cryptography 20/10/2015 | pag. 24
25
DES: Algorithm Cryptography 20/10/2015 | pag. 25
26
DES: Algorithm Cryptography 20/10/2015 | pag. 26
27
AES: Rijndael Cipher Cryptography 20/10/2015 | pag. 27 We again need some algebra first!
28
Intermezzo: Polynomials over Rings Cryptography 20/10/2015 | pag. 28
29
Example: Polynomials over Rings Cryptography 20/10/2015 | pag. 29
30
Intermezzo: Polynomials over Rings Cryptography 20/10/2015 | pag. 30
31
Example: Polynomials over Rings Cryptography 20/10/2015 | pag. 31
32
Intermezzo: Polynomials over Fields Cryptography 20/10/2015 | pag. 32
33
Intermezzo: Polynomials over Fields Cryptography 20/10/2015 | pag. 33
34
Intermezzo: Polynomials over Fields Cryptography 20/10/2015 | pag. 34
35
Intermezzo: Polynomials over Fields Cryptography 20/10/2015 | pag. 35
36
Example: Polynomials over Fields Cryptography 20/10/2015 | pag. 36
37
Intermezzo: Polynomials over Fields Cryptography 20/10/2015 | pag. 37
38
Intermezzo: Polynomials over Fields Cryptography 20/10/2015 | pag. 38
39
Example: Polynomials over Fields Cryptography 20/10/2015 | pag. 39
40
Intermezzo: Finite Fields Let R be a ring. If there is a least positive integer n such that nr=0 for all r in R, then we say that R has characteristic n and write char(R)=n. When no such integer exists, we set char(R)=0. Let F be a field with char(F)>0, then char(F) is prime. Any finite field F has char(F)=p, where p is prime. Let F be a finite field, where char(F)=p, then |F|=p n, with n a strictly positive integer. Cryptography 20/10/2015 | pag. 40
41
Intermezzo: Construction of Finite Fields Cryptography 20/10/2015 | pag. 41 Hence we can also denote it by GF(p). Note that char(GF(p))=p.
42
Intermezzo: Construction of Finite Fields Cryptography 20/10/2015 | pag. 42
43
Intermezzo: Construction of Finite Fields Cryptography 20/10/2015 | pag. 43 2
44
Intermezzo: Construction of Finite Fields Cryptography 20/10/2015 | pag. 44
45
Intermezzo: Construction of Finite Fields Cryptography 20/10/2015 | pag. 45 For every prime p and positive integer n there is an irreducible polynomial of degree n in Z p [x] !
46
Intermezzo: Construction of Finite Fields Theorem Let p be a prime and f(x) an irreducible polynomial of degree n in Z p [x]. Then Z p [x]/ (or Z p [x] mod f(x) ) is a field with p n elements. Proof As we can choose as coset representatives polynomials of the form a 0 + a 1 x + a 2 x 2 +... + a n-1 x n-1, we get a ring of order p n. As in Z n we use the analogue of the Extended Euclidean algorithm to find the inverse of an element. Let g(x) be a coset representative of a non-zero element of the ring. Since f(x) is irreducible it is not divisible by any lower degree polynomial and so the gcd(g(x), f(x)) = 1. Then by the analogue of the Extended Euclidean algorithm 1 = a(x)g(x) + b(x)f(x) for some polynomials a(x), b(x). Then a(x) is a coset representative for the inverse of g(x). Cryptography 20/10/2015 | pag. 46
47
Example: Construction of Finite Fields Cryptography 20/10/2015 | pag. 47
48
Example: Construction of Finite Fields Cryptography 20/10/2015 | pag. 48
49
Intermezzo: Construction of Finite Fields Cryptography 20/10/2015 | pag. 49 Conclusion: For every prime p and positive integer n the field GF(p n ) exists!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.