Download presentation
Presentation is loading. Please wait.
Published bySolomon Powers Modified over 9 years ago
1
-Introduce using familiar language -Review & Reinforce -Compare & Contrast -Teach in different context Increased Student Achievement LINKING
2
Use Simple Straight Forward Examples – Do not get bogged down in arithmetic
3
I can’t teach ________, because my students don’t know ________.
4
Add / Subtract Rational Expressions
5
1 + 3 1 2 2 6 3 6 5 6 +
6
1 + 3 1 2 = 5 6 1 + 4 1 5 = 9 20 1 + 3 1 4 = 7 12
7
1 + 3 1 5 = 8 15
8
2 + 3 1 5 = 13 15 3 + 10 2 3 = 29 30
9
3 + 4 1 5 = 3 + 4 1 5 = 19 20
10
A + B C D = AD + BC BD A + B C D =
11
2 + X 3 Y = XY 2 + X 3 Y = 2Y + 3X XY
12
3 + x-1 2 x+3 = (x-1)(x+3) 3 + x-1 2 x+3 = (x-1)(x+3) 3(x+3) + 2(x-1)
13
Student Assessment
14
1 + 4 1 3 = 7 12
15
5 + 24 7 18 = 24 = 3 4 CD = 72
16
18 24 = 3 4 5 = 15 72 7 = 18 28 72 + 53 72
17
+ Polynomials
18
6 7 2=6(100) + 7(10) + 2(1) 6 10 + 7 10 + 2 2 6 n + 7 n + 2 2 6x + 7x + 2 2
19
5 3 2+3 4 1 8 7 3
20
Addition - Left 412 + 352 + 215 = 123 + 502 + 271 = 432 + 125 + 301 =
21
(5x + 3x + 2) + (3x + 4x + 1) 22 = (8x + 7x + 3) 2
22
Multiplication
23
3 2 6 7 2 6 4 3 2 2 1 x 3x + 6 x + 2 x + 3 2 x + 2x 2 x + 5x + 6
24
(x + 3) (x + 2) = x + 5x + 6 2 (x + 4) (x + 5) = x + 9x + 20 2 (x + 10) (x + 5) = x + 15x + 50 2
25
(2x + 3) (3x + 5) 6x + 8x + 15 2
26
10x +15 2x + 3 3x + 5 2 6x + 9x 2 6x +19x +15
27
(2x + 3) (3x + 5) 2 6x + 19x + 15
28
F O I L
29
6 2 3 2 2 1 x 6 2 3 2 2 1 x 7
30
Relations & Functions
31
Functions Special relation in which no 2 ordered pairs have the same 1 st element.
32
Menu Hamburger ……….4 Hotdog ……………3 Sandwich …………5 00
33
H,Hd, S,4 00 3 5 4 H,Hd,(,S)3 00 5 4 (H,)(Hd, ) (S, )3 00 5
34
.50 1, 2, 3, 1 00 1 50.50 (1, ) (2, ) (3, ) (10, ? ) 1 00 1 50 Cold Drinks
35
.50 1, 2, 3, 1 00 1 50.50 (1, ) (2, ) (3, ) (10, ? ) 1 00 1 50 C = n x.50 =.50n or y = x 1212
36
50 (1,) (4, )2 00 1 (2, )1 50 (3, ) 1 75 (4, )
37
Slope
38
50 (1,)1 00 (2, )1 50 (3, ) m = y - y 1 x - x 1
39
Equations of Lines
40
= m y - y 1 x - x 1 y - y 1 = m (x - x 1 )
41
Find the equation of a line passing through the point (2,3), with m = 4 y - 3 = 4 (x - 2) point - slope
42
y – 3 = 4x - 8 Solve for y: y = 4x - 5 y – 3 = 4 (x - 2)
43
y = mx + b y = 4x - 5 slope - intercept
44
4x – y = 5 general form
45
Using linkage, if you know slope, you can reconstruct the other equations.
46
-Introduce using familiar language -Review & Reinforce -Compare & Contrast -Teach in different context Increased Student Achievement LINKING
47
Linking Fractions Decimals Percents
48
Linking Pythagorean Theorem Distance Formula Equation of a Circle Trig Identity
49
Linking Special products in algebra Special products in arithmetic
50
Linking Quadratic Formula Completing the Square
51
Linking Solving Linear Equations Order of Operations
52
Why Linking? It’s not a matter of if students are going to forget information, it’s a matter of when. Linking concepts will allow students to reconstruct concepts and skills
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.