Presentation is loading. Please wait.

Presentation is loading. Please wait.

-Introduce using familiar language -Review & Reinforce -Compare & Contrast -Teach in different context Increased Student Achievement LINKING.

Similar presentations


Presentation on theme: "-Introduce using familiar language -Review & Reinforce -Compare & Contrast -Teach in different context Increased Student Achievement LINKING."— Presentation transcript:

1 -Introduce using familiar language -Review & Reinforce -Compare & Contrast -Teach in different context Increased Student Achievement LINKING

2 Use Simple Straight Forward Examples – Do not get bogged down in arithmetic

3 I can’t teach ________, because my students don’t know ________.

4 Add / Subtract Rational Expressions

5 1 + 3 1 2 2 6 3 6 5 6 +

6 1 + 3 1 2 = 5 6 1 + 4 1 5 = 9 20 1 + 3 1 4 = 7 12

7 1 + 3 1 5 = 8 15

8 2 + 3 1 5 = 13 15 3 + 10 2 3 = 29 30

9 3 + 4 1 5 = 3 + 4 1 5 = 19 20

10 A + B C D = AD + BC BD A + B C D =

11 2 + X 3 Y = XY 2 + X 3 Y = 2Y + 3X XY

12 3 + x-1 2 x+3 = (x-1)(x+3) 3 + x-1 2 x+3 = (x-1)(x+3) 3(x+3) + 2(x-1)

13 Student Assessment

14 1 + 4 1 3 = 7 12

15 5 + 24 7 18 = 24 = 3 4 CD = 72

16 18 24 = 3 4 5 = 15 72 7 = 18 28 72 + 53 72

17 + Polynomials

18 6 7 2=6(100) + 7(10) + 2(1) 6 10 + 7 10 + 2 2 6 n + 7 n + 2 2 6x + 7x + 2 2

19 5 3 2+3 4 1 8 7 3

20 Addition - Left 412 + 352 + 215 = 123 + 502 + 271 = 432 + 125 + 301 =

21 (5x + 3x + 2) + (3x + 4x + 1) 22 = (8x + 7x + 3) 2

22 Multiplication

23 3 2 6 7 2 6 4 3 2 2 1 x 3x + 6 x + 2 x + 3 2 x + 2x 2 x + 5x + 6

24 (x + 3) (x + 2) = x + 5x + 6 2 (x + 4) (x + 5) = x + 9x + 20 2 (x + 10) (x + 5) = x + 15x + 50 2

25 (2x + 3) (3x + 5) 6x + 8x + 15 2

26 10x +15 2x + 3 3x + 5 2 6x + 9x 2 6x +19x +15

27 (2x + 3) (3x + 5) 2 6x + 19x + 15

28 F O I L

29 6 2 3 2 2 1 x 6 2 3 2 2 1 x 7

30 Relations & Functions

31 Functions Special relation in which no 2 ordered pairs have the same 1 st element.

32 Menu Hamburger ……….4 Hotdog ……………3 Sandwich …………5 00

33 H,Hd, S,4 00 3 5 4 H,Hd,(,S)3 00 5 4 (H,)(Hd, ) (S, )3 00 5

34 .50 1, 2, 3, 1 00 1 50.50 (1, ) (2, ) (3, ) (10, ? ) 1 00 1 50 Cold Drinks

35 .50 1, 2, 3, 1 00 1 50.50 (1, ) (2, ) (3, ) (10, ? ) 1 00 1 50 C = n x.50 =.50n or y = x 1212

36 50 (1,) (4, )2 00 1 (2, )1 50 (3, ) 1 75 (4, )

37 Slope

38 50 (1,)1 00 (2, )1 50 (3, ) m = y - y 1 x - x 1

39 Equations of Lines

40 = m y - y 1 x - x 1 y - y 1 = m (x - x 1 )

41 Find the equation of a line passing through the point (2,3), with m = 4 y - 3 = 4 (x - 2) point - slope

42 y – 3 = 4x - 8 Solve for y: y = 4x - 5 y – 3 = 4 (x - 2)

43 y = mx + b y = 4x - 5 slope - intercept

44 4x – y = 5 general form

45 Using linkage, if you know slope, you can reconstruct the other equations.

46 -Introduce using familiar language -Review & Reinforce -Compare & Contrast -Teach in different context Increased Student Achievement LINKING

47 Linking Fractions Decimals Percents

48 Linking Pythagorean Theorem Distance Formula Equation of a Circle Trig Identity

49 Linking Special products in algebra Special products in arithmetic

50 Linking Quadratic Formula Completing the Square

51 Linking Solving Linear Equations Order of Operations

52 Why Linking? It’s not a matter of if students are going to forget information, it’s a matter of when. Linking concepts will allow students to reconstruct concepts and skills


Download ppt "-Introduce using familiar language -Review & Reinforce -Compare & Contrast -Teach in different context Increased Student Achievement LINKING."

Similar presentations


Ads by Google