Presentation is loading. Please wait.

Presentation is loading. Please wait.

Business Mathematics www.uni-corvinus.hu/~u2w6ol Rétallér Orsi.

Similar presentations


Presentation on theme: "Business Mathematics www.uni-corvinus.hu/~u2w6ol Rétallér Orsi."— Presentation transcript:

1 Business Mathematics www.uni-corvinus.hu/~u2w6ol Rétallér Orsi

2 Graphical solution

3 The problem max z = 3x 1 + 2x 2 2x 1 + x 2 ≤ 100 x 1 + x 2 ≤ 80 x 1 ≤ 40 x 1 ≥ 0 x 2 ≥ 0

4 Graphical solution Feasible region

5 Is there always one solution?

6 Possible LP solutions One optimum Alternative optimums (Infinite solutions) Infeasibility Unboundedness

7 Possible LP solutions One optimum Alternative optimums (Infinite solutions) Infeasibility Unboundedness

8 Possible LP solutions One optimum Alternative optimums (Infinite solutions) Infeasibility Unboundedness

9 Alternative optimum max z = 4x 1 + x 2 8x 1 + 2x 2 ≤ 16 5x 1 + 2x 2 ≤ 12 x 1 ≥ 0 x 2 ≥ 0

10 Alternative optimum

11 Possible LP solutions One optimum Alternative optimums (Infinite solutions) Infeasibility Unboundedness

12 Infeasibility max z = x 1 + x 2 x 1 + x 2 ≤ 4 x 1 - x 2 ≥ 5 x 1 ≥ 0 x 2 ≥ 0

13 Infeasibility

14 Possible LP solutions One optimum Alternative optimums (Infinite solutions) Infeasibility Unboundedness

15 Unboundedness max z = -x 1 + 3x 2 x 1 - x 2 ≤ 4 x 1 + 2x 2 ≥ 4 x 1 ≥ 0 x 2 ≥ 0

16 Unboundedness

17 Sensitivity analysis

18 When is the yellow point the optimal solution?

19 Sensitivity analysis

20 The problem max z = 3x 1 + 2x 2 2x 1 + x 2 ≤ 100 x 1 + x 2 ≤ 80 x 1 ≤ 40 x 1 ≥ 0 x 2 ≥ 0 2x 1 + x 2 = 100 x 1 + x 2 = 80

21 Sensitivity analysis 2x 1 + x 2 = 100 x 1 + x 2 = 80 Range of optimality: [1;2]

22 Duality theorem

23 Problem – Winston The Dakota Furniture Company manufactures desks, tables, and chairs. The manufacture of each type of furniture requires lumber and two types of skilled labor: finishing and carpentry. The amount of each resource needed to make each type of furniture is given in the following table.

24 ResourceDeskTableChair Lumber (board ft) 861 Finishing (hours) 421,5 Carpentry (hours) 21,50,5 Problem – Winston

25 At present, 48 board feet of lumber, 20 finishing hours, and 8 carpentry hours are available. A desk sells for $60, a table for $30, and a chair for $20. Since the available resources have already been purchased, Dakota wants to maximize total revenue.

26 Formalizing the problem 8x 1 + 6x 2 + 1x 3 ≤ 48 4x 1 + 2x 2 + 1,5x 3 ≤ 20 2x 1 + 1,5x 2 + 0,5x 3 ≤ 8 x 1, x 2, x 3 ≥ 0 max z = 60x 1 + 30x 2 + 20x 3

27 The new problem For how much could a company buy all the resources of the Dakota company? (Dual task) The prices for the resources are indicated as y 1, y 2, y 3

28 ResourceDeskTableChair Lumber (board ft) 861 Finishing (hours) 421,5 Carpentry (hours) 21,50,5 Problem – Winston

29 The primal problem 8x 1 + 6x 2 + 1x 3 ≤ 48 4x 1 + 2x 2 + 1,5x 3 ≤ 20 2x 1 + 1,5x 2 + 0,5x 3 ≤ 8 x 1, x 2, x 3 ≥ 0 max z = 60x 1 + 30x 2 + 20x 3

30 The dual problem min w = 48y 1 + 20y 2 + 8y 3

31 ResourceDeskTableChair Lumber (board ft) 861 Finishing (hours) 421,5 Carpentry (hours) 21,50,5 Problem – Winston

32 The primal problem 8x 1 + 6x 2 + 1x 3 ≤ 48 4x 1 + 2x 2 + 1,5x 3 ≤ 20 2x 1 + 1,5x 2 + 0,5x 3 ≤ 8 x 1, x 2, x 3 ≥ 0 max z = 60x 1 + 30x 2 + 20x 3

33 The dual problem min w = 48y 1 + 20y 2 + 8y 3 8y 1 + 4y 2 + 2y 3 ≥ 60

34 The dual problem 8y 1 + 4y 2 + 2y 3 ≥ 60 6y 1 + 2y 2 + 1,5y 3 ≥ 30 1y 1 + 1,5y 2 + 0,5y 3 ≥ 20 y 1, y 2, y 3 ≥ 0 min w = 48y 1 + 20y 2 + 8y 3

35 Traditional minimum task 2x 1 + 3x 2 ≥ 2 2x 1 + x 2 ≥ 4 x 1 – x 2 ≥ 6 x 1, x 2 ≥ 0 min z = 5x 1 + 2x 2 2y 1 + 2y 2 + y 3 ≤ 5 3y 1 + y 2 – y 3 ≤ 2 y 1, y 2, y 3 ≥ 0 max w = 2y 1 + 4y 2 + 6y 3

36 Traditional minimum task 2x 1 + 3x 2 ≥ 2 2x 1 + x 2 ≥ 4 x 1 – x 2 ≥ 6 x 1, x 2 ≥ 0 min z = 5x 1 + 2x 2 2y 1 + 2y 2 + y 3 ≤ 5 3y 1 + y 2 – y 3 ≤ 2 y 1, y 2, y 3 ≥ 0 max w = 2y 1 + 4y 2 + 6y 3

37 A little help for duality Maximum taskMinimum task Variables y i ≥ 0≥ Boundaries y i ≤ 0≤ y i ur= Boundaries ≥y i ≤ 0 Variables ≤y i ≥ 0 =y i ur

38 Nontraditional minimum task x 1 + 2x 2 + x 3 ≥ 2 x 1 – x 3 ≥ 1 x 2 + x 3 = 1 2x 1 + x 2 ≤ 3 x 1 ur, x 2, x 3 ≥ 0 min z = 2x 1 + 4x 2 + 6x 3

39 Nontraditional minimum task y 1 + y 2 + y 4 = 2 2y 1 + y 3 + y 4 ≤ 4 y 1 – y 2 + y 3 ≤ 6 y 1, y 2 ≥ 0, y 3 ur, y 4 ≤ 0 max w = 2y 1 + y 2 + y 3 + 3y 4

40 Thank you for your attention!


Download ppt "Business Mathematics www.uni-corvinus.hu/~u2w6ol Rétallér Orsi."

Similar presentations


Ads by Google