Download presentation
Presentation is loading. Please wait.
Published byArlene Miles Modified over 9 years ago
1
Chapter 2 Combinatorial Analysis 主講人 : 虞台文
2
Content Unordered Samples without Replacement Combinations Binomial Coefficients Some Useful Mathematic Expansions Unordered Samples with Replacement Derangement Calculus
3
Chapter 2 Combinatorial Analysis Unordered Samples without Replacement Combinations
4
Combinations n distinct objects Choose k objects How many choices?
5
Combinations Drawing k objects, their order is unnoted, among n distinct objects w/o replacement, the number of possible outcomes is This notation is preferred
6
More on
7
Examples
8
Example 4 The mathematics department consists of 25 full professors, and 15 associate professors, and 35 assistant professors. A committee of 6 is selected at random from the faculty of the department. Find the probability that all the members of the committee are assistant professors. x Denoting the all-assistant event as E,
9
Example 5 A poker hand has five cards drawn from an ordinary deck of 52 cards. Find the probability that the poker hand has exactly 2 kings. x Denoting the 2-king event as E,
10
Example 6 Two boxes both have r balls numbered 1, 2, …, r. Two random samples of size m and n are drawn without replacement from the 1 st and 2 nd boxes, respectively. Find the probability that these two samples have exactly k balls with common numbers. 1 1 2 2 3 3 r r 1 1 2 2 3 3 r r m n P(“k matches”) = ? E | |=? |E|=?
11
Example 6 1 1 2 2 3 3 r r 1 1 2 2 3 3 r r m n # possible outcomes from the 1 st box. # possible k -matches. # possible outcomes from the 2nd box for each k -match.
12
Example 6 1 1 2 2 3 3 r r 1 1 2 2 3 3 r r m n
13
1 1 2 2 3 3 r r 1 1 2 2 3 3 r r m n 樂透和本例有何關係 ?
14
Example 6 1 1 2 2 3 3 r r 1 1 2 2 3 3 r r m n 本式觀念上係由第一口箱子出發所推得
15
Example 6 1 1 2 2 3 3 r r 1 1 2 2 3 3 r r m n 觀念上,若改由第二口箱子出發結果將如何 ?
16
Example 6 1 1 2 2 3 3 r r 1 1 2 2 3 3 r r m n
17
Exercise 1 1 2 2 3 3 r r 1 1 2 2 3 3 r r m n
18
Chapter 2 Combinatorial Analysis Binomial Coefficients
21
n terms
22
Binomial Coefficients n boxes
23
Binomial Coefficients Facts:
24
Properties of Binomial Coefficients
27
Exercise
28
Properties of Binomial Coefficients 第一類取法 : 第二類取法 :
29
Properties of Binomial Coefficients Pascal Triangular
30
Properties of Binomial Coefficients Pascal Triangular 1 1 1 1 1 1 1 1 1 2 3 3 4 6 4
31
Properties of Binomial Coefficients 吸星大法
32
Example 7-1
33
Example 7-2 k x+1 Fact: ?
34
Example 7-2 k k+1 簡化版
35
Example 7-3 k k+2 簡化版 ?
36
Negative Binomial Coefficients
37
How to memorize? k k k (n)(n) 11
38
Negative Binomial Coefficients 這公式真的對嗎 ? k k k (n+k1)(n+k1) 11 1
39
Negative Binomial Coefficients
40
Chapter 2 Combinatorial Analysis Some Useful Mathematic Expansions
48
z 值沒有任何限制
49
Some Useful Mathematic Expansions
50
Chapter 2 Combinatorial Analysis Unordered Samples with Replacement
51
Discussion 投返 非投返 有序 無序 ?
52
Unordered Samples with Replacement n 不同物件任取 k 個 可重複選取 n 不同物件,每一 中物件均無窮多個 從其中任取 k 個
53
Unordered Samples with Replacement 此多項式乘開後 z k 之係數有何意義 ?
54
Unordered Samples with Replacement
55
投返 非投返 有序 無序
56
Example 8 Suppose there are 3 boxes which can supply infinite red balls, green balls, and blue balls, respectively. How many possible outcomes if ten balls are chosen from them? n = 3 k = 10
57
Example 9 There are 3 boxes, the 1st box contains 5 red balls, the 2nd box contains 3 green balls, and the 3rd box contains infinite many blue balls. How many possible outcomes if k balls are chosen from them. k=1 有幾種取法 k=2 有幾種取法 k=3 有幾種取法 k=4 有幾種取法 觀察 :
58
Example 9 此多項式乘開後 z k 之係數卽為解
59
Example 9 此多項式乘開後 z k 之係數卽為解
60
Example 9 此多項式乘開後 z k 之係數卽為解 Coef(z k )=?
61
Example 9 Coef(z k )=? jk4jk4 jk6jk6 j k 10 jkjk
62
Example 9 Coef(z k )=? jk4jk4 jk6jk6 j k 10 jkjk
63
Example 9
65
Chapter 2 Combinatorial Analysis Derangement
66
最後 ! ! ! 每一個人都拿 到別人的帽子 錯排
67
Example 10 n 人中正好 k 人拿 對自己的帽子 n 人中無人拿 對自己的帽子
68
Example 10
69
n 人中正好 k 人拿對自己的帽子 n 人中無人拿對自己的帽子 12 21 12 23 3 1312 1/2!2/3!
70
Example 10 n 人中正好 k 人拿對自己的帽子 n 人中無人拿對自己的帽子 令 A i 表第 i 個人拿了自己帽子
71
Example 10 A i 表第 i 個人拿了自己帽子
72
Example 10 A i 表第 i 個人拿了自己帽子 12n 1...
73
Example 10 A i 表第 i 個人拿了自己帽子 12n 12...
74
Example 10 A i 表第 i 個人拿了自己帽子
75
Example 10 A i 表第 i 個人拿了自己帽子
76
Example 10 A i 表第 i 個人拿了自己帽子
77
Example 10 A i 表第 i 個人拿了自己帽子
78
Example 10 A i 表第個人拿了自己帽子
79
Example 10
80
... k matches n k mis matches
81
Example 10
82
Remark
83
Chapter 2 Combinatorial Analysis Calculus
84
Some Important Derivatives Derivatives for multiplications — Derivatives for divisions — Chain rule —
85
L’Hopital rule
86
Examples
87
Integration by Part
89
The Gamma Function
90
Example 12
93
0 ( 1)
94
Example 12
99
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.